基于稀疏表示和深度神經(jīng)網(wǎng)絡(luò)模型的西洋樂器自動分類方法.pdf_第1頁
已閱讀1頁,還剩78頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、隨著現(xiàn)代社會科技的快速發(fā)展,數(shù)字音樂的數(shù)量也以海量的方式增長,為了方便用戶音樂檢索,對音樂進(jìn)行有效合理的分類十分重要。但音樂基數(shù)多,每天新的單曲數(shù)又不斷增加,采取人工的方式對音樂進(jìn)行分類不切實(shí)際。因此,本文采用深度神經(jīng)網(wǎng)絡(luò)模型對音樂提取特征實(shí)現(xiàn)自動分類。與此同時,由于音樂信號具備稀疏性的特點(diǎn),本文創(chuàng)新型地提出將稀疏特征與深度神經(jīng)網(wǎng)絡(luò)模型相結(jié)合的方法,實(shí)現(xiàn)音樂信號的自動分類。音樂信號分類標(biāo)準(zhǔn)眾多,本文旨在將提出的新方法應(yīng)用在西洋樂器的自動

2、分類上。
  本文首先介紹了音樂信號的常見特征,包括基本的物理學(xué)特征和人耳感知的心理學(xué)角度的特征,與此同時還介紹了人耳聽覺系統(tǒng)的特性。接著介紹了音樂自動分類的理論,包含對音樂的特征提取,并著重介紹了本文所采用的深度神經(jīng)網(wǎng)絡(luò)模型方面的相關(guān)概念。然后研究了音樂信號的稀疏特征提取過程,創(chuàng)新性地引入新型的稀疏表示字典庫,該字典庫是基于不同樂器發(fā)出音色頻率間的差異。本文通過MATLAB仿真實(shí)驗(yàn),對比了基于傳統(tǒng)字典庫和基于本文構(gòu)建字典庫下的稀

3、疏重構(gòu)結(jié)果,證明了基于本文構(gòu)建字典庫下進(jìn)行稀疏重構(gòu)效果優(yōu)于傳統(tǒng)字典庫。最后本文研究了基于稀疏表示和深度神經(jīng)網(wǎng)絡(luò)模型結(jié)合的西洋樂器自動分類情況,傳統(tǒng)的深度神經(jīng)網(wǎng)絡(luò)模型輸入端為音頻信號的梅爾頻率倒譜系數(shù)(Mel Frequency Cepstrum Coefficient,MFCC),本文創(chuàng)新性地使用音頻信號的稀疏特征作為深度神經(jīng)網(wǎng)絡(luò)模型輸入端,在此基礎(chǔ)上訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型參數(shù),實(shí)現(xiàn)西洋樂器的自動分類。本文采用Python腳本語言,通過實(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論