外文翻譯 --流體力學(xué)混合在單螺桿擠出機(jī)_第1頁(yè)
已閱讀1頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  中文3685字</b></p><p>  附件一:外文資料翻譯譯文</p><p>  流體力學(xué)混合在單螺桿擠出機(jī)</p><p>  Ravlndran Chella和Julio M. Ottlno*</p><p>  Massachusetts州Amherst,Massachuset

2、ts大學(xué),化學(xué)工程系 01003卷</p><p><b>  矩形空腔流</b></p><p>  圖5為一個(gè)序列的一個(gè)接口,已進(jìn)行二維矩形腔流拉伸步驟,在長(zhǎng)度增長(zhǎng)的界面,L(t)伴隨著條紋厚度減少而減少,它被定義為相鄰的接口之間的平均垂直距離,因此L(t)s(t)常數(shù),Biggs和Middleman(1974b)使用一個(gè)簡(jiǎn)化的標(biāo)記和細(xì)胞(MAC)技術(shù)(Harlo

3、w和Amsden,1970)來(lái)追蹤該接口的位置。然而,他們只考慮水平接口以及他們認(rèn)為小拉伸比率的情況。</p><p>  圖5對(duì)兩個(gè)相鄰的垂直拉伸的流體層之間的接口在二維矩形腔流的步驟順序示意圖</p><p>  在一個(gè)典型的數(shù)值模擬中,變形及連續(xù)線拉伸(或表面)是使用有限數(shù)量的粒子模擬。對(duì)于幅度的一個(gè)或兩個(gè)數(shù)量級(jí)的相對(duì)伸展的線變形,包含所述線路分離的單個(gè)顆粒,定義并不清晰,對(duì)每一個(gè)粒

4、子的初始濃度(每單位長(zhǎng)度的粒子數(shù)量)會(huì)有一段時(shí)間在這幾乎不可能重建。(如果粒子流混亂,這個(gè)問(wèn)題會(huì)急劇變得嚴(yán)重。)當(dāng)進(jìn)行線路中的示蹤粒子模擬時(shí),相同的問(wèn)題會(huì)出現(xiàn)在實(shí)驗(yàn)工作中,另一方面,該線路不能過(guò)于集中,因?yàn)樗皇潜粍?dòng)接口,如果線路是可溶性示蹤劑模擬,問(wèn)題將會(huì)擴(kuò)散。一般來(lái)說(shuō),這似乎很難遵循傳統(tǒng)的跟蹤方法或?qū)嶒?yàn)的或相對(duì)較高的拉伸比拉伸,數(shù)值誤差可能會(huì)使它不可能實(shí)現(xiàn)可逆性預(yù)期規(guī)則運(yùn)動(dòng)(Khakhar等人,1984),界面的長(zhǎng)度變化的關(guān)系可以用

5、有限的材料進(jìn)行拉伸計(jì)算</p><p><b>  (11)</b></p><p>  該組包含該接口的差分線元件的初始取向的需要被指定,對(duì)于垂直界面(垂直于移動(dòng)板塊)=(0,l)和水平界面(平行移動(dòng)板塊)= (l,0),以及所有的行元素,由于它是在初始配置,所以用公式11計(jì)算是相對(duì)簡(jiǎn)單的。這里使用的方法可以進(jìn)行計(jì)算任意大的拉伸比,為了能夠運(yùn)用公式11,一種光腔流場(chǎng)

6、的數(shù)學(xué)描述是有必要的,在這種情況下,參與關(guān)于瞬態(tài)問(wèn)題利用穩(wěn)態(tài)速度分布的誤差比較小,例如穩(wěn)態(tài)操作條件下迅速達(dá)到正常操作條件(Bigg 和 Middleman,1974b Erwin 和 Moktharian,1981),由公式1可以得出這一流程最簡(jiǎn)單的說(shuō)明。</p><p>  圖6比較簡(jiǎn)化為矩形空腔流獲得使用SFT(- - -)和公式12得到 W / H = 15</p><p>  然而

7、,使用公式1和公式11結(jié)合以確定L(t)的值,在方向和變形經(jīng)過(guò)由材料元件移動(dòng)到其互補(bǔ)的位置變化假設(shè)是必要的。但是,計(jì)算表明,混合實(shí)現(xiàn)假定取向的變化是非常敏感的方向,因此需要開(kāi)發(fā)一個(gè)流場(chǎng)的數(shù)學(xué)描述,并不需要這樣任意假設(shè)。在n - s方程的數(shù)值解這個(gè)流場(chǎng)(公式l,公式2)是可能的,它似乎并不需要計(jì)算拉伸比率或更高的基于當(dāng)前的跟蹤技術(shù),此外,一個(gè)半解析處理允許對(duì)不同參數(shù)的影響更易于可理解。因此,在附錄中,Kantorovich Galerki

8、n方法(Kantorovich and Krylov, 1964) 被用來(lái)獲得一個(gè)近似的解析解的穩(wěn)態(tài),蠕變流動(dòng)腔流方程。根據(jù)公式A.8,A.15和A.22</p><p>  在公式A.22中,,和的作用僅僅被定義為腔的長(zhǎng)寬比。</p><p>  雖然這些方程滿(mǎn)足邊界條件下速度的平均移動(dòng)量,但僅在使用它們計(jì)算流線時(shí)相對(duì)準(zhǔn)確,對(duì)于復(fù)雜的縱橫比,與那些得到更準(zhǔn)確的數(shù)值方法(Pan 和 Acr

9、ivos, 1967);以及坐標(biāo)的最大和最小坐標(biāo)重合幾乎完全與SFT的相應(yīng)互補(bǔ)值的位置(圖6),這些方程就不適用了。</p><p>  通過(guò)最初垂直接口,使用公式11 和 公式12,計(jì)算相對(duì)拉伸為兩個(gè)不同方面比率在圖 7 中表示。在特有的循環(huán)時(shí)間,縱橫比對(duì)界面的相對(duì)拉伸只有很小的影響。關(guān)于單調(diào)遞增的均值曲線的振蕩周期值約等于,振蕩周期可以由圖8得出,當(dāng)拉伸率(= d L(t)/ dt)時(shí),作圖的接口特定速率準(zhǔn)確

10、顯示了相同特征的振蕩,這樣的振蕩特征需要重新定位(圖3b)。</p><p>  圖7接口的矩形腔流函數(shù)的計(jì)算與速度場(chǎng)由公式12得出,最初垂直界面(垂直于移動(dòng)板) 除以腔成體積相等的通道縱橫比的相對(duì)拉伸</p><p>  圖8 無(wú)因次的特定接口的拉伸率在矩形空腔流(W / H = 15,最初垂直界面)</p><p>  圖9 相對(duì)拉伸中矩形腔流接口的初始方向的影

11、響(W/H = 15)</p><p>  對(duì)單一的接口長(zhǎng)度影響初始方向如圖 9 所示,該混合程度的初始取向可通過(guò)圖9中工件的坐標(biāo)表現(xiàn)。研究發(fā)現(xiàn),每一種情況下計(jì)算出的界面面積的實(shí)際值對(duì)初始取向的依賴(lài)性非常小,在圖8中可以查找原因,一個(gè)最初垂直界面區(qū)域(垂直于流線)和一個(gè)最初水平界面區(qū)域(幾乎平行流簡(jiǎn)化)之間存在巨大差異,極大實(shí)現(xiàn)越來(lái)越多的最初垂直界面縮小成為水平對(duì)齊。同時(shí)發(fā)現(xiàn)混合相對(duì)等于甚至大于位移的初始位置,接

12、口相對(duì)的界面區(qū)域可以認(rèn)為是近似關(guān)系</p><p>  圖10變化在沿矩形空腔流動(dòng)的流線行進(jìn)的差分材料元件的標(biāo)高(a)和方位(b)所示可以由公式12計(jì)算出速度(F是正常材料平面之間的角度和軸)</p><p>  圖11比較的界面拉伸矩形空腔流預(yù)測(cè)了SFT(- - -),預(yù)測(cè)使用的流場(chǎng)比值12(─),(W / H = 15,最初垂直界面)</p><p><b

13、>  (13)</b></p><p>  而在擠出機(jī)混合分析中速度計(jì)算可以由等式12得出,這并不包括另外概念上的問(wèn)題,這與SFT的計(jì)算量相比明顯增加了,因此,確定流體元件的取向變化與該流場(chǎng)獲得的信息是否可以被納入使用SFT結(jié)果準(zhǔn)確混合計(jì)算是有用的,圖10中,表示典型的時(shí)間差分線元的取向變化的關(guān)系,也表示在圖中的上面部分是元素相應(yīng)的坐標(biāo)(圖10a),虛線表示最大值和最小值的位置。 圖表明這里本身

14、能夠快速建立坐標(biāo),可以忽略材料元件的初始位置或方向,因此,當(dāng)圍繞軸方向旋轉(zhuǎn)到界面區(qū)域時(shí),相關(guān)因素旋轉(zhuǎn)接近。SFT的研究與假設(shè)是邊界旋轉(zhuǎn)近,通過(guò)材料元素混合的預(yù)測(cè)是否有用,現(xiàn)在得到驗(yàn)證。</p><p>  圖12腔縱橫比對(duì)拉伸與使用SFT預(yù)測(cè)矩形方腔流的初始垂直界面的影響</p><p>  使用SFT計(jì)算初始垂直界面的變形與使用圖11中12式相比,旋轉(zhuǎn)流體元素在空間旋轉(zhuǎn),兩條曲線的數(shù)值有

15、較好的一致性,然而,使用SFT得到的振蕩周期是使用公式12得到結(jié)果的三倍以上,這與再分配時(shí)的值大概一致 (由Shearer(1973)定義,以從腔體的一側(cè)完全置換流體的其它部分所需要的時(shí)間)使用SFT計(jì)算 </p><p><b>  (14)</b></p><p>  使用這兩種不同的流場(chǎng)的初始垂直界面混合預(yù)測(cè)之間的公式,即使在圖11所示的比較大的拉伸比也適用,這

16、似乎很奇怪,因?yàn)镾FT預(yù)測(cè)水平的接口不變形以及接口的很大一部分是近于水平拉伸比。然而,對(duì)于有限次的界面是從來(lái)沒(méi)有完全意義上的水平,SFT中預(yù)測(cè)一個(gè)小而有限的拓展與公式12的結(jié)果一致。</p><p>  預(yù)測(cè)弱混合的實(shí)現(xiàn)使用公式12得到縱橫比,采用SFT確認(rèn)(圖12),SFT中相關(guān)要素按回轉(zhuǎn),由此可見(jiàn),通過(guò)公式12可以計(jì)算出復(fù)制的矩形腔流混合的主要特點(diǎn),從而,在三維空間中使用擠出流是有利的,因?yàn)樗鄬?duì)公式12簡(jiǎn)單

17、了。</p><p>  由于缺少實(shí)驗(yàn)數(shù)據(jù),實(shí)驗(yàn)數(shù)據(jù)的理論預(yù)測(cè)比較難,可行性實(shí)驗(yàn)數(shù)據(jù)不完整(例如 Bigg 和Middleman,1974b) 兩者都是因?yàn)椴淮_定二維流動(dòng)是否在實(shí)驗(yàn)裝置中實(shí)現(xiàn)和并不是大多數(shù)據(jù)在有利的情況下測(cè)得(較大的縱橫比)。但是,綜合實(shí)驗(yàn)程序正在進(jìn)行中(Chien, 1984)。</p><p>  從空腔流得到的結(jié)論在擠出機(jī)中的應(yīng)用應(yīng)謹(jǐn)慎,但應(yīng)注意的是,流速在整個(gè)擠出機(jī)

18、中的橫截面的分布可防止確切坐標(biāo)中的矩形腔和軸向距離沿著所述擠出機(jī)連續(xù)時(shí)間之間轉(zhuǎn)化,另外,從拓?fù)涞慕嵌葋?lái)看,如果我們考慮兩種流體混合,說(shuō)A和B最初在腔流水平層狀,然后在側(cè)壁的兩條接觸線,最后存在于整個(gè)運(yùn)動(dòng),然而,擠出機(jī)最初充滿(mǎn),隨后A和B作為參考,相鄰的水平層將有明顯區(qū)分,沒(méi)有接觸線,當(dāng)在垂直界面時(shí)將會(huì)出現(xiàn)類(lèi)似情況。 </p><p>  圖13通過(guò)擠出機(jī)的流場(chǎng)中的引入相鄰的水平層的兩種液體混合產(chǎn)生的層狀結(jié)構(gòu)的示意

19、圖</p><p>  圖14跡線在擠出機(jī)通道材料元素 </p><p>  從以上討論中可以很明顯得出,該方法在用于分析三維擠出流量的二維空腔流混合是可能的沒(méi)有準(zhǔn)確的擴(kuò)展,但是近似關(guān)系的可能性有待繼續(xù)探討。</p><p>  分析單螺桿擠出機(jī)的混合</p><p>  關(guān)于在擠出機(jī)中混合方法的分析主要與用于所述螺旋環(huán)形混合器類(lèi)似,修改是必

20、要的,但是,通過(guò)公式12算出的速度場(chǎng),得出一個(gè)完全的分析方法是不可能的,由在流體元件跡線的總數(shù)不連續(xù)可排除SFT 。</p><p>  圖13是擠出機(jī)中通道的兩種液體的混合示意圖,截面切割和軸向切割顯示由混合作用所產(chǎn)生的層狀結(jié)構(gòu)。至于螺旋環(huán)形混合器,和 s用作最大混合度的局部措施,混合參數(shù)和分部在任一通道截面對(duì)應(yīng)流場(chǎng)的不均勻性中,并在進(jìn)料面上條紋的方向及厚度分布,對(duì)于許多應(yīng)用來(lái)說(shuō)在第一個(gè)片刻來(lái)描述這些分布應(yīng)該是

21、足夠了。</p><p>  力矩軸向配置和橫截面的混合參數(shù)分布的裝置文件可以如下確定(圖14所示):(1)許多不同材料的平面確定在進(jìn)料平面,每個(gè)對(duì)應(yīng)界面區(qū)域中的原料的位置和方向。選擇平面的數(shù)量應(yīng)足夠大,從而這個(gè)變量計(jì)算分布的影響可以忽略不計(jì);當(dāng)然,實(shí)際數(shù)字依賴(lài)所取得的結(jié)果;在實(shí)踐中,200-300因素被認(rèn)為足夠條紋厚度幅度下降三個(gè)數(shù)量級(jí)。注意RTD被發(fā)現(xiàn)對(duì)混合參數(shù)分布到所選材料的元素不敏感。(2)公式2用于所述

22、流場(chǎng)的數(shù)學(xué)描述來(lái)計(jì)算這些材料每個(gè)平面的拉伸過(guò)程。(3)均值和所述混合參數(shù)分布的情況由幾個(gè)軸向位置確定,這種方法是非常通用的,并且可以被應(yīng)用到其它混合器中去。</p><p>  對(duì)于連續(xù)流動(dòng)系統(tǒng)的宏觀混合效率是由下列關(guān)系式確定(Ottino等人,1981)</p><p><b>  (15)</b></p><p>  在更詳細(xì)的計(jì)算中,檢查

23、上混合綁定是很有意義的,通過(guò)設(shè)置公式15中右側(cè)的eff(z) = 1獲得。通常情況下,定義在上部混合預(yù)測(cè)值顯著高于大多數(shù)實(shí)際混合流量(Ottino和Macosko,1980;Ottino,1983),但考慮到估計(jì)模型參數(shù)對(duì)混合模型參數(shù)的影響,計(jì)算綁定上混合模型參數(shù)對(duì)于SFT特別簡(jiǎn)單。</p><p><b>  (16)</b></p><p>  取函數(shù){N}和含有

24、,的函數(shù)以及L/H函數(shù)的比例常數(shù)的平均值(需要考慮其上的平均停留時(shí)間的影響)。因此,由公式16來(lái)看,影響混合的相關(guān)參數(shù)為{N},,,和L/H。W / H的影響只能間接地通過(guò)移動(dòng)流體單元的垂直坐標(biāo)變化。</p><p>  在此基礎(chǔ)上,當(dāng)上限值增大時(shí),混合的可能性將被增大,然后由公式16得出,混合參數(shù)方程可通過(guò):(1)保持L / H和不變,增加;(2)保持和不變,增加L/H;(3)保持L/H和不變,當(dāng)>時(shí),增

25、加;當(dāng)<時(shí),減小,可由以下方程得出</p><p><b>  (17)</b></p><p><b>  和</b></p><p>  以及(4)H L/H 和保持不變,減少H。</p><p>  這些結(jié)論與定性實(shí)驗(yàn)結(jié)果相一致(Maddock,1959;Sheridan, 1975),

26、在下一節(jié)中將使用更完美的分析方法進(jìn)行測(cè)試。</p><p>  附件二:外文資料原文</p><p>  Fluid Mechanics of Mixing in a Single-Screw Extruder</p><p>  Ravlndran Chella and Julio M. Ottlno* </p><p>  Departm

27、ent of Chemical Engineering, University of Massachusetts, </p><p>  Amherst, Massachusetts 0 1003</p><p>  Rectangular Cavity Flow </p><p>  Figure 5 is a diagram of a sequence of s

28、teps in the stretching of an interface that has been subjected to two-dimensional rectangular cavity flow. The increase in length of the interface, L(t), is accompanied by a decrease in the striation thickness, defined a

29、s the average perpendicular distance between neighboring interfaces, so that for long times L(t)s(t)constant. Biggs and Middleman (1974b) used a simplified Marker-and-Cell (MAC) technique (Harlow and Amsden, 1970) to tra

30、ck the position of t</p><p>  Figure5. Schematic diagram of sequence of steps in the stretching of an interface between two adjacent vertical fluid layers in two dimensional rectangular cavity flow.</p>

31、;<p>  In a typical numerical simulation, the deformation and stretching of continuous lines (or surfaces) is modeled using a finite number of particles. For a relative stretch of one or two orders of magnitude as

32、 the line deforms the individual particles comprising the line separate, making the line less clearly defined. For every initial concentration of particles (number of particles per unit length) there will be a time beyon

33、d which it becomes nearly impossible to reconstruct the line. (This proble</p><p><b>  (11)</b></p><p>  The set of initial orientations of the differential line elements comprising

34、the interface need to be specified. For a vertical interface (perpendicular to the moving plate) = (0,l), and for a horizontal interface (parallel to the moving plate) = (l,0), for all the line elements. The evaluation o

35、f the integral in eq 11 is relatively simple as it is over the initial configuration. The approach used here can be carried out to arbitrarily large stretch ratios. In order to apply eq 11, a mathematica</p><p

36、>  Figure6. Comparison of streamlines for rectangular cavity flow obtained using the SFT (- - -) and eq 12 for W/H = 15.</p><p>  However, in using eq 1 in conjunction with eq 11 to determine L(t), assump

37、tions are necessary regarding the changes in orientation and deformation undergone by a material element in moving to its complementary location. However, computations indicate that the mixing achieved is extremely sensi

38、tive to the assumed change in orientation at the flights. It is therefore desirable to develop a mathematical description of the flow field that does not entail such arbitrary assumptions. While a numerical</p>&l

39、t;p>  where,,andare functions only of the cavity aspect ratio, defined in eq A.22. </p><p>  Even though these equations satisfy the boundary condition on the velocity at the moving plate only in the mea

40、n the streamlines calculated using them are in good agreement, for large aspect ratios, with those obtained by more accurate numerical methods (Pan and Acrivos, 1967); also,the maximum and minimumcoordinates of the strea

41、mlines coincide almost exactly with the location of the corresponding complementary plants of the SFT (Figure 6). </p><p>  The relative stretch experienced by an initially vertical interface, calculated usi

42、ng eq 11 and 12, is shown in Figure 7 for two different aspects ratios. The aspect ratio has only a small influence on the relative stretch of the interface; the period of oscillation of the curves about a monotonically

43、increasing mean value is approximately equal to , a characteristic recirculation time.The periodic oscillation can be seen more clearly in Figure 8, where the specific rate of stretching of the int</p><p>  

44、Figure7. Relative stretch of interface in rectangular cavity flow as a function of the channel aspect ratio, calculated with the velocity field of eq 12, for an initially vertical interface (perpendicular to the moving p

45、late) dividing cavity into equal volumes.</p><p>  Figure8. Nondimensionalized specific rate of stretching of interface in rectangular cavity flow (W/H = 15, initially vertical interface).</p><p&g

46、t;  Figure9. Influence of initial orientation on relative stretch of interface in rectangular cavity flow (W/H = 15) </p><p>  The influence of the initial orientation of the interface on the normalized inte

47、rface length is shown in Figure 9. The apparent sensitivity of the mixing level to the initial orientation is an artifact of choice of coordinates in Figure 9. When the actual amount of interfacial area in each case is c

48、alculated, the dependence on the initial orientation is found to be very small. The reason for this can be seen in Figure 8, where the initial large differences between an initially vertical interface</p><p>

49、;  Figure10. Change in elevation (a) and orientation (b) of a differential material element in traveling along a streamline in rectangular cavity flow, calculated with the velocity field of eq 12 (F is the angle between

50、the normal to the material plane and the axis).</p><p>  Figure11. Comparison of interface stretching in rectangular cavity flow predicted by the SFT (----) with that predicted using the flow field of eq 12

51、(─),(W/H = 15, initially vertical interface).</p><p><b>  (13)</b></p><p>  While the use of the velocity field given by eq 12 in the analysis of mixing in the extruder involves no a

52、dditional conceptual difficulty, the computational effort is considerably increased compared with the SFT. Hence it is useful to determine whether information obtained with this flow field regarding the change in orienta

53、tion of the fluid elements near the flights can be incorporated into mixing calculations using the SFT with satisfactory results. Figure 10 shows a typical plot of the change</p><p>  Figure12. Influence of

54、cavity aspect ratio on stretching of an initially vertical interface in rectangular cavity flow as predicted using the SFT. </p><p>  The deformation of an initially vertical interface calculated using the S

55、FT, with the fluid elements rotated through at the flights, is compared to that calculated using eq 12, in Figure 11. Numerically the two curves are in good agreement; however, the period of the oscillation obtained usi

56、ng the SFT is more than three times that obtained using eq 12 and is approximately in agreement with the value of the redistribution time (defined by Shearer (1973) as the time required to displace fluid com</p>&

57、lt;p><b>  (14)</b></p><p>  The agreement between the mixing predictions for an initially vertical interface using these two different flow fields, even for the relatively large stretch ratios

58、 shown in Figure 11, seems rather surprising as the SFT predicts no deformation of a horizontal interface, and a large portion of the interface is nearly horizontal at these large stretch ratios. However, for finite time

59、s the interface is never perfectly horizontal, and the SFT predicts a small but finite stretch in agreement with the</p><p>  The weak dependence of the mixing achieved on the channel aspect ratio predicted

60、using eq 12 is confirmed using the SFT (Figure 12). The SFT with the rotation of the material elements at the flights is thus seen to duplicate the principal features of mixing in the rectangular cavity flow as predicte

61、d using eq 12, and its use in the analysis of mixing in the three-dimensional extruder flow is favored over eq 12 because of its relative simplicity.</p><p>  Comparison of the theoretical predictions with e

62、xperimental data is difficult because of a scarcity of experimental data. The available experimental data are incomplete (e.g., Bigg and Middleman, 1974b) both because of the uncertainity about whether two-dimensional fl

63、ow was achieved in the experimental setup and because not many data were taken under conditions of interest here (large aspect ratios). However, a comprehensive experimental program is underway (Chien, 1984).</p>

64、<p>  The conclusions obtained from the cavity flow should be applied with care to extruders. It should be noted that the distribution of velocities across the extruder cross-section prevents an exact coordinate tr

65、ansformation between successive times in the rectangular cavity and axial distance along the extruder. Also, from a topological point of view, if we consider the mixing of two fluids, say A and B, initially layered horiz

66、ontally in the cavity flow, the two contact lines at the side wall are p</p><p>  Figure13. Schematic diagram of lamellar structure generated by the extruder flow field in the mixing of two fluids introduced

67、 as adjacent horizontal layers.</p><p>  Figure14. Pathline of material elements in extruder channel. </p><p>  From the above arguments it is apparent that no rigorous extension of the approach

68、 used to analyze mixing for the two-dimensional cavity flow is possible to the three-dimensional extruder flow; however, the possibility of approximate relations will be explored.</p><p>  Analysis of Mixing

69、 in Single Screw Extruder</p><p>  The approach used to analyze mixing in the extruder is similar in principal to that used for the helical annular mixer; modifications are necessary, however, as a completel

70、y analytical approach is not possible using the velocity field given by eq 12 and is precluded for the SFT by the discontinuities in the fluid element pathlines at the flights. </p><p>  Figure 13 is a diagr

71、am of the mixing of two fluids in the extruder channel. Cross-sectional cuts and an axial cut display the layered structure generated by the mixing action. As for the helical annular mixer, and s are used as local measur

72、es of the state of mixedness. The distribut- ions of the mixing parameters andat any channel cross section correspond to the nonhomo- geneity of the flow field and to distributions in the orientations and thicknesses of

73、the striations in the feed plane. For ma</p><p>  Axial profiles of the means and moments of the cross- sectional mixing parameter distributions can be determined as follows (see Figure 14): (i) A number of

74、differential material planes are identified in the feed plane,the location and orientation of each corresponding to the position of the interfacial area in the feed. The number of planes chosen should be large enough tha

75、t the influence of this variable on the calculated distributions is negligible; the actual number, of course, depends on th</p><p>  The macroscopic mixing efficiency for continuous flow systems is defined b

76、y the relation (Ottino et al., 1981)</p><p><b>  (15)</b></p><p>  Before resorting to more detailed calculations, it is instructive to examine the upper mixing bound, obtained by se

77、tting eff(z) = 1 on the right-hand side of eq 15. Typically, the upper mixing bound predicts values significantly higher than are achieved in most practical mixing flows (Ottino and Macosko, 1980; Ottino, 1983), but prov

78、ides an indication of the influence of model parameters on mixing. Computation of the upper mixing bound is particularly simple for the SFT.</p><p><b>  (16)</b></p><p>  The proport

79、ionality constant required for equality is a function of the feed orientations {N}, and of ,, and L/H (through their influence on the mean residence time). Thus from eq 16, the relevant parameters that influence mixing

80、are {N},,, and L/H. The influence of W/H arises only indirectly through the change in the vertical coordinate of the fluid elements at the flights. </p><p>  On the basis that when the upper bound increases,

81、 there is a possibility of improved mixing, then from eq 16, mixing may be improved by: (i) increasingat constant L/H and; (ii)increasin- g L/H at constantand; (iii) increasingfor>, decreasingfor<, at constant L/H

82、and , where</p><p><b>  (17)</b></p><p><b>  and</b></p><p>  and (iv) decreasing H at constant L/H and.</p><p>  These conclusions are in agree

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論