版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 英文原文</b></p><p> Description</p><p> The at89s52 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only
2、Memory (PEROM) and 128 bytes RAM. The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51? instruction set and pinout. The chip combines a v
3、ersatile 8-bit CPU with Flash on a monolithic chip, the Atmel at89s52 is a powerful microcomputer which provides a highly flexible and cost effective s</p><p> Features: </p><p> ? Compatible
4、with MCS-51? Products</p><p> ? 4K Bytes of In-System Reprogrammable Flash Memory</p><p> ? Endurance: 1,000 Write/Erase Cycles</p><p> ? Fully Static Operation: 0 Hz to 24 MHz&l
5、t;/p><p> ? Three-Level Program Memory Lock</p><p> ? 128 x 8-Bit Internal RAM</p><p> ? 32 Programmable I/O Lines</p><p> ? Two 16-Bit Timer/Counters</p><p
6、> ? Six Interrupt Sources</p><p> ? Programmable Serial Channel</p><p> ? Low Power Idle and Power Down Modes</p><p> The at89s52 provides the following standard features: 4K
7、 bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the at89s52 is d
8、esigned with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system
9、 to </p><p> Pin Description:</p><p> VCC Supply voltage.</p><p> GND Ground.</p><p><b> Port 0</b></p><p> Port 0 is an 8-bit open drai
10、n bidirectional I/O port. As an output port each pin can sink eight TTL inputs. When is are written to port 0 pins, the pins can be used as high impedance inputs. </p><p> Port 0 may also be configured to b
11、e the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups. </p><p> Port 0 also receives the code bytes during Flash programming,
12、and outputs the code bytes during program verification. External pullups are required during program verification.</p><p><b> Port 1</b></p><p> Port 1 is an 8-bit bidirectional I/
13、O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins t
14、hat are externally being pulled low will source current (IIL) because of the internal pullups. </p><p> Port 1 also receives the low-order address bytes during Flash programming and verification.</p>
15、<p><b> Port 2</b></p><p> Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins t
16、hey are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.</p><p> Port 2 e
17、mits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pull-ups when
18、emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. </p><p> Port 2 also receives the high-order address
19、 bits and some control signals during Flash programming and verification.</p><p><b> Port 3</b></p><p> Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3
20、output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will
21、source current (IIL) because of the pullups.</p><p> Port 3 also serves the functions of various special features of the at89s52 as listed below:</p><p> Port 3 also receives some control sign
22、als for Flash programming and verification.</p><p><b> RST</b></p><p> Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.<
23、/p><p><b> ALE/PROG</b></p><p> Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input
24、 (PROG) during Flash programming.</p><p> In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that
25、 one ALE pulse is skipped during each access to external Data Memory. </p><p> If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a M
26、OVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.</p><p><b> PSEN</b></p>
27、<p> Program Store Enable is the read strobe to external program memory. </p><p> When the at89s52 is executing code from external program memory, PSEN is activated twice each machine cycle, except th
28、at two PSEN activations are skipped during each access to external data memory.</p><p><b> EA/VPP</b></p><p> External Access Enable. EA must be strapped to GND in order to enable
29、the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. </p><p> EA should be
30、strapped to VCC for internal program executions. </p><p> This pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require 12-volt VPP.</p><p>
31、;<b> XTAL1</b></p><p> Input to the inverting oscillator amplifier and input to the internal clock operating circuit.</p><p><b> XTAL2</b></p><p> Output
32、 from the inverting oscillator amplifier.</p><p> Oscillator Characteristics</p><p> XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured f
33、or use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven a
34、s shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two </p><p><b> Idle Mode</b
35、></p><p> In idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions register
36、s remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.</p><p> It should be noted that when idle is terminated by a hard ware reset, the device
37、 normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the p
38、ort pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one tha</p><p>
39、; Status of External Pins During Idle and Power Down Modes</p><p> Power Down Mode</p><p> In the power down mode the oscillator is stopped, and the instruction that invokes power down is the
40、 last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power down mode is terminated. The only exit from power down is a hardware reset. Reset redefines the SFRs but does
41、 not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to r</p><p> Program Memory Lo
42、ck Bits</p><p> On the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below: </p><p> Lock Bit Prote
43、ction Modes</p><p> When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, an
44、d holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.</p><p> Progr
45、amming the Flash:</p><p> The at89s52 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready to be programmed. The programming interface accepts eith
46、er a high-voltage (12-volt) or a low-voltage (VCC) program enable signal. The low voltage programming mode provides a convenient way to program the at89s52 inside the user’s system, while the high-voltage programming mod
47、e is compatible with conventional third party Flash or EPROM programmers. </p><p> The at89s52 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side markin
48、g and device signature codes are listed in the following table.</p><p> The at89s52 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-chip Flash
49、Programmable and Erasable Read Only Memory, the entire memory must be erased using the Chip Erase Mode.</p><p> Programming Algorithm: </p><p> Before programming the at89s52, the address, dat
50、a and control signals should be set up according to the Flash programming mode table and Figures 3 and 4. To program the at89s52, take the following steps.</p><p> 1. Input the desired memory location on th
51、e address lines.</p><p> 2. Input the appropriate data byte on the data lines.</p><p> 3. Activate the correct combination of control signals.</p><p> 4. Raise EA/VPP to 12V for
52、the high-voltage programming mode.</p><p> 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat st
53、eps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.</p><p> Data Polling: The at89s52 features Data Polling to indicate the end of a write cyc
54、le. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next c
55、ycle may begin. Data Polling may begin any time after a write cycle has been initiated.</p><p> Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulle
56、d low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.</p><p> Program Verify: If lock bits LB1 and LB2 have not been programmed
57、, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabl
58、ed.</p><p> Chip Erase: The entire Flash Programmable and Erasable Read Only Memory array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The
59、 code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.</p><p> Reading the Signature Bytes: The signature bytes are read by the same pro
60、cedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.</p><p> (030H) = 1EH indicates manufactured by
61、 Atmel</p><p> (031H) = 51H indicates 89C51</p><p> (032H) = FFH indicates 12V programming</p><p> (032H) = 05H indicates 5V programming</p><p> Programming Interfa
62、ce</p><p> Every code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initi
63、ated, will automatically time itself to completion.</p><p><b> 中文翻譯</b></p><p><b> 描述</b></p><p> at89s52是美國ATMEL公司生產(chǎn)的低電壓,高性能CMOS8位單片機(jī),片內(nèi)含4Kbytes的快速可擦寫的只讀
64、程序存儲器(PEROM)和128 bytes 的隨機(jī)存取數(shù)據(jù)存儲器(RAM),器件采用ATMEL公司的高密度、非易失性存儲技術(shù)生產(chǎn),兼容標(biāo)準(zhǔn)MCS-51產(chǎn)品指令系統(tǒng),片內(nèi)置通用8位中央處理器(CPU)和flish存儲單元,功能強(qiáng)大at89s52單片機(jī)可為您提供許多高性價比的應(yīng)用場合,可靈活應(yīng)用于各種控制領(lǐng)域。</p><p><b> 主要性能參數(shù):</b></p><
65、p> 與MCS-51產(chǎn)品指令系統(tǒng)完全兼容</p><p> 4K字節(jié)可重復(fù)寫flash閃速存儲器</p><p><b> 1000次擦寫周期</b></p><p> 全靜態(tài)操作:0HZ-24MHZ</p><p><b> 三級加密程序存儲器</b></p><
66、;p> 128*8字節(jié)內(nèi)部RAM</p><p> 32個可編程I/O口</p><p> 2個16位定時/計(jì)數(shù)器</p><p><b> 6個中斷源</b></p><p> 可編程串行UART通道</p><p> 低功耗空閑和掉電模式</p><p&g
67、t;<b> 功能特性概述</b></p><p> AT89S52提供以下標(biāo)準(zhǔn)功能:4K 字節(jié)flish閃速存儲器,128字節(jié)內(nèi)部RAM,32個I/O口線,兩個16位定時/計(jì)數(shù)器,一個5向量兩級中斷結(jié)構(gòu),一個全雙工串行通信口,片內(nèi)振蕩器及時鐘電路。同時,at89s52可降至0HZ的靜態(tài)邏輯操作,并支持兩種軟件可選的節(jié)電工作模式。空閑方式停止CPU的工作,但允許RAM,定時/計(jì)數(shù)器,串行
68、通信口及中斷系統(tǒng)繼續(xù)工作。掉電方式保存RAM中的內(nèi)容,但振蕩器停止工作并禁止其它所有部件工作直到下一個硬件復(fù)位。</p><p><b> 方框圖</b></p><p><b> 引腳功能說明</b></p><p><b> Vcc:電源電壓</b></p><p>
69、<b> GND:地</b></p><p> P0口:P0口是一組8位漏極開路型雙向I/O口,也即地址/數(shù)據(jù)總線復(fù)位口。作為輸出口用時,每位能吸收電流的方式驅(qū)動8個邏輯門電路,對端口寫“1”可 作為高阻抗輸入端用。</p><p> 在訪問外部數(shù)據(jù)存儲器或程序存儲器時,這組口線分時轉(zhuǎn)換地址(低8位)和數(shù)據(jù)總線復(fù)用,在訪問期間激活內(nèi)部上拉電阻。</p>
70、;<p> P1口:P1是一個帶內(nèi)部上拉電阻的8位雙向I/O口,P1的輸出緩沖級可驅(qū)動(吸收或輸出電流)4個TTL邏輯門電路。對端口寫“1”,通過內(nèi)部的上拉電阻把端口拉到高電平,此時可做熟出口。做輸出口使用時,因?yàn)閮?nèi)部存在上拉電阻,某個引腳被外部信號拉低時會輸出一個電流(Iil).</p><p> Flash編程和程序校驗(yàn)期間,P1接受低8位地址。</p><p>
71、P2口:P2是一個帶有內(nèi)部上拉電阻的8位雙向I/O口,P2的輸出緩沖級可驅(qū)動(吸收或輸出電流)4個TTL邏輯門電路。對端口寫“1”,通過內(nèi)部地山拉電阻把端口拉到高電平,此時可作為輸出口,作輸出口使用時,因?yàn)閮?nèi)部存在上拉電阻,某個引腳被外部信號拉低時會輸出一個電流(Iil)。</p><p> 在訪問外部程序存儲器獲16位地址的外部數(shù)據(jù)存儲器(例如執(zhí)行 MOVX @DPTR指令)時,P2口送出高8位地址數(shù)據(jù)。在
72、訪問8位地址的外部數(shù)據(jù)存儲器(如執(zhí)行 MOVX @RI指令)時,P2口線上的內(nèi)容(也即特殊功能寄存器(SFR)區(qū)中R2寄存器的內(nèi)容),在整個訪問期間不改變。</p><p> Flash編程或校驗(yàn)時,P2亦接受高地址和其它控制信號。</p><p> P3口:P3口是一組帶有內(nèi)部上拉電阻的8位雙向I/O口。P3口輸出緩沖級可驅(qū)動(吸收或輸出電流)4個TTL邏輯門電路。對P3口寫入“1”
73、時,他們被內(nèi)部上拉電阻拉高并可作為輸出口。做輸出端時,被外部拉低的P3口將用上拉電阻輸出電流(Iil)。P3口除了作為一般的I/O口線外,更重要的用途是它的第二功能,如下表所示:</p><p> P3口還接收一些用于flash閃速存儲器編程和程序校驗(yàn)的控制信號。</p><p> RST:復(fù)位輸入。當(dāng)振蕩器工作時,RST引腳出現(xiàn)兩個機(jī)器周期以上高電平將使單片機(jī)復(fù)位。</p>
74、;<p> ALE/PROG:當(dāng)訪問外部程序存儲器或數(shù)據(jù)存儲器時,ALE(地址所存允許)輸出脈沖用于所存地址的低8位字節(jié)。即使不訪問外部存儲器,ALE仍以時鐘振蕩頻率的1/6輸出固定的正脈沖信號,因此它可對外輸出時鐘或用于定時目的。要注意的是:每當(dāng)訪問外部數(shù)據(jù)存儲器時將跳過一個ALE脈沖。</p><p> 對flash存儲器編程期間,該引腳還用于輸入編程脈沖(^PROG)。</p>
75、<p> 如有不要,可通過對特殊功能寄存器(SFR)區(qū)中的8EH單元的D0位置位,可禁止ALE操作。該外置位后,只要一條MOVX和MOVC指令A(yù)LE才會被激活。此外,該引腳會被微弱拉高,單片機(jī)執(zhí)行外部程序時,應(yīng)設(shè)置ALE無效。</p><p> ^PSEN:程序存儲允許(^PSEN)輸出是外部程序存儲器的讀選通信號,當(dāng)at89s52由外部程序存儲器取指令(或數(shù)據(jù))時,每個機(jī)器周期兩個^PSEN有
76、效,即輸出兩個脈沖。在此期間,當(dāng)訪問外部數(shù)據(jù)存儲器,這兩次有效的^PSEN信號不出現(xiàn)。</p><p> EA/VPP:外部訪問允許。欲使CPU僅訪問外部程序存儲器(地址為0000H---FFFFH),EA端必須保持低電平(接地)。需注意的是; 如果加密位LB1被編程,復(fù)位時內(nèi)部會鎖存EA端狀態(tài)。</p><p> 如 EA端為高電平(接VCC端),CPU則執(zhí)行內(nèi)部程序存儲器中的指令。
77、</p><p> Flash存儲器編程時,該引腳加上+12V的編程允許電源VPP,當(dāng)然這必須是該器件是使用12V編程電壓VPP.</p><p> XTAL1: 振蕩器反相放大器的及內(nèi)部時鐘發(fā)生器的輸出端。</p><p> XTAL2: 振蕩器反相放大器的輸出端。</p><p><b> 時鐘振蕩器:</b>
78、;</p><p> at89s52中有一個用于構(gòu)成內(nèi)部振蕩器的高增益反相放大器,引腳XTAL1和XTAL2分別是該放大器的輸入端和輸出端。這個放大器與作為反饋的片外石英晶體或陶瓷諧振器一起構(gòu)成自激振蕩器,振蕩電路參見圖5。</p><p> 外接石英晶體(或陶瓷諧振器)及電容C1、C2接在放大器的反饋回路中構(gòu)成并聯(lián)振蕩電路。對外接電容C1、C2雖然沒有十分嚴(yán)格的要求,但電容容量的大小
79、會輕微影響振蕩頻率的高低、振蕩器的穩(wěn)定性、起振的難易程度及溫度穩(wěn)定性,如果使用石英晶體,我們推薦電容使用30PF+10PF,而如使用陶瓷諧振器建議選擇40PF+10PF。</p><p> 用戶也可以采用外部時鐘。采用外部時鐘的電路如圖5右所示。這種情況下,外部時鐘脈沖接到XTAL1端,即內(nèi)部時鐘發(fā)生器的輸入端,XTAL2則懸空</p><p> 由于外部時鐘信號是通過一個2分頻觸發(fā)器
80、后作為內(nèi)部時鐘信號的,所以對外部時鐘信號的占空比沒有特殊要求,但最小高電平持續(xù)時間和最大的低電平持續(xù)時間應(yīng)符合產(chǎn)品技術(shù)要求。</p><p><b> 空閑模式:</b></p><p> 在空閑工作模式狀態(tài),CPU保持睡眠狀態(tài)而所有片內(nèi)的外設(shè)仍保持激活狀態(tài),這種方式由軟件產(chǎn)生。此時,片內(nèi)RAM和所有特殊功能寄存器的內(nèi)容保持不變??臻e模式可由任何允許的中斷請求或硬
81、件復(fù)位終止。</p><p> 終止空閑工作模式的方法有兩種,其一是任何一條被允許中斷的事件被激活,即可終止空閑工作模式。程序會首先響應(yīng)中斷,進(jìn)入中斷服務(wù)程序,執(zhí)行完中斷服務(wù)程序并僅隨終端返回指令,下一條要執(zhí)行的指令就是使單片機(jī)進(jìn)入空閑模式那條指令后面的一條指令。其二是通過硬件復(fù)位也可將空閑工作模式終止,需要注意的是,當(dāng)由硬件復(fù)位來終止空閑模式時,CPU通常是從激活空閑模式那條指令的下一條指令開始繼續(xù)執(zhí)行程序的
82、,要完成內(nèi)部復(fù)位操作,硬件復(fù)位脈沖要保持兩個機(jī)器周期(24個時鐘周期)有效,在這種情況下,內(nèi)部禁止CPU訪問片內(nèi)RAM,而允許訪問其它端口。為了避免可能對端口產(chǎn)生以外寫入,激活空閑模式的那條指令后一條指令不應(yīng)該是一條對端口或外部存儲器的寫入指令。</p><p> 空閑和掉電模式外部引腳狀態(tài)</p><p><b> 掉電模式:</b></p>&l
83、t;p> 在掉電模式下,震蕩器停止工作,進(jìn)入掉電模式的指令是最后一條被執(zhí)行的指令,片內(nèi)RAM和特殊功能寄存器的內(nèi)容在終止掉電模式前被凍結(jié)。退出掉電模式的唯一方法是硬件復(fù)位,復(fù)位后將重新定義全部特殊功能寄存器但不改變RAM中的內(nèi)容,在VCC恢復(fù)到正常工作電平前,復(fù)位應(yīng)無效,且必須保持一定時間以使振蕩器重啟動并穩(wěn)定工作。</p><p> 程序存儲器的加密 :</p><p> A
84、T89S52可使用對芯片上的3個加密位進(jìn)行編程(P)或不編程(U)來得到如下表所示的功能:</p><p><b> 加密位保護(hù)功能表</b></p><p> 當(dāng)加密位LB1被編程時,在復(fù)位期間,EA端的邏輯電平被采樣并鎖存,如果單片機(jī)上電后一直沒有復(fù)位,則鎖存起的初始值是一個隨機(jī)數(shù),且這個隨機(jī)數(shù)會一直保持到真正復(fù)位為止。為使單片機(jī)能正常工作,被鎖存的EA電平值
85、必須與該引腳當(dāng)前的邏輯電平一致。此外,加密位只能通過整片擦除的方法清除。</p><p> FLASH閃速存儲器的編程:</p><p> at89s52單片機(jī)內(nèi)部有4K字節(jié)的FLASH PEROM,這個FLASH存儲陣列出廠時已處于擦除狀態(tài)(即所有存儲單元的內(nèi)容均為FFH),用戶隨時可對其進(jìn)行編程。編程接口可接收高電平(+12V)或低電平(VCC)的允許編程信號,低電平編程模式適合于
86、用戶再線編程系統(tǒng),而高電平編程模式可與通用EPROM編程器兼容。</p><p> AT89S52單片機(jī)中,有些屬于低電壓編程方式,而有些則是高電平編程方式,用戶可從芯片上的型號和讀取芯片內(nèi)的簽名字節(jié)獲得該信息,見下表。</p><p> AT89S52的程序存儲器陣列是采用字節(jié)寫入方式編程的,每次寫入一個字節(jié),要對整個芯片內(nèi)的PEROM程序存儲器寫入一個非空字節(jié),必須使用片擦除的方式
87、將整個存儲器的內(nèi)容清除。</p><p><b> 編程方法:</b></p><p> 編程前,需按表1、圖3和圖4所示設(shè)置好地址,數(shù)據(jù)及控制信號, at89s52編程方法如下:</p><p> 在地址線上加上要編程單元的地址信號。</p><p> 在數(shù)據(jù)線上加上要寫入的數(shù)據(jù)字節(jié)。</p>&
88、lt;p> 激活相應(yīng)的控制信號。</p><p> 在高電壓編程方式時,將^EA/VPP端加上+12V編程電壓。</p><p> 每對FLASH存儲陣列寫入一個字節(jié)或每寫入一個程序加密位,加上一個ALE/^PROG編程脈沖,改變編程單元的地址和寫入的數(shù)據(jù),重復(fù)1—5步驟,直到全部文件編程結(jié)束。每個字節(jié)寫入周期是自身定時地,通常約為1.5ms。</p><p
89、> 數(shù)據(jù)查詢:at89s52單片機(jī)用數(shù)據(jù)查詢方式來檢測一個寫周期是否結(jié)束,在一個寫周期中,如需要讀取最后寫入的那個字節(jié),則讀出的數(shù)據(jù)的最高位(P0.7)是原來寫入字節(jié)最高位的反碼。寫周期完成后,有效的數(shù)據(jù)就會出現(xiàn)在所有輸出端上,此時,可進(jìn)入下一個字節(jié)的寫周期,寫周期開始后,可在任意時刻進(jìn)行數(shù)據(jù)查詢。</p><p> READY/^BUSY:字節(jié)編程的進(jìn)度可通過“RDY/^BSY”輸出信號監(jiān)測,編程期間
90、,ALE變?yōu)楦唠娖健癏”后P3.4(RDY/^BSY)端電平被拉低,表示正在編程狀態(tài)(忙狀態(tài))。編程完成后,P3.4變?yōu)楦唠娖奖硎緶?zhǔn)備就緒狀態(tài)。</p><p> 程序校驗(yàn):如果加密位LB1、LB2沒有進(jìn)行編程,則代碼數(shù)據(jù)可通過地址和數(shù)據(jù)線讀回原編寫的數(shù)據(jù)。加密位不可能直接變化。證實(shí)加密位的完成通過觀察它們的特點(diǎn)和能力。</p><p> 芯片擦除:利用控制信號的正確組合(表1)并保持
91、ALE/^PROG引腳10ms的低電平脈沖寬度即可將PEROM陣列(4k字節(jié))整片擦除,代碼陣列在擦除操作中將任何非空單元寫入“1”,這步驟需要再編程之前進(jìn)行。</p><p> 讀片內(nèi)簽名字節(jié):at89s52單片機(jī)內(nèi)有3個簽名字節(jié),地址為030H、031H和032H。用于聲明該器件的廠商、型號和編程電壓。讀簽名字節(jié)的過程和單元030H、031H和032H的正常校驗(yàn)相仿,只需將P3.6和P3.7保持低電平,返回
92、值意義如下:</p><p> ?。?30H)=1EH聲明產(chǎn)品由ATMEL公司制造。</p><p> ?。?31H)=51H聲明為at89s52單片機(jī)。</p><p> ?。?32H)=FFH聲明為12V編程電壓。</p><p> ?。?32H)=05H聲明為5V編程電壓。</p><p> 編程接口:采用控制
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單片機(jī)中英文翻譯
- 中英文翻譯--單片機(jī)
- 單片機(jī)中英文資料翻譯
- 基于單片機(jī)外文翻譯@中英文翻譯@外文文獻(xiàn)翻譯
- at89s52單片機(jī)應(yīng)用中英文翻譯
- 中英文-單片機(jī)實(shí)現(xiàn)的步進(jìn)電機(jī)控制系統(tǒng).doc
- 排氣控制系統(tǒng)--中英文翻譯.doc
- 排氣控制系統(tǒng)--中英文翻譯.doc
- 單片機(jī)電子技術(shù)中英文翻譯
- 單片機(jī)畢業(yè)設(shè)計(jì)中英文翻譯---單片機(jī)技術(shù)的發(fā)展與應(yīng)用
- 單片機(jī)溫度控制系統(tǒng)
- 【中英雙語】196關(guān)于單片機(jī)鍋爐溫度控制系統(tǒng)設(shè)計(jì)有關(guān)的外文文獻(xiàn)翻譯成品:基于單片機(jī)加熱溫度自動控制系統(tǒng)(中英文雙語對照)
- 單片機(jī)溫度控制論文單片機(jī)溫度控制系統(tǒng)論
- 外文翻譯-中英文對照avr單片機(jī)
- 單片機(jī)水位溫度控制系統(tǒng)
- 中英文翻譯資料.doc
- 中英文翻譯資料.doc
- 基于at89c2051單片機(jī)的溫度控制系統(tǒng)的設(shè)計(jì)-中英文對照本.doc
- 中英文翻譯資料.doc
- 用單片機(jī)控制的干電池充電器[附程序+中英文翻譯].doc
評論
0/150
提交評論