版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> Investigation of AASHTO Live Load Reduction in</p><p> Reinforced Concrete Slab Bridges</p><p> F. El Me sk i 1; M. Mabsout 2 ; and K. Tarhini3</p><p> Journal of Brid
2、ge Engineering.Submitted July 30,2010;accepted Februray 24,2011;posted ahead of print March 2,2011;doi:10.1061/(ASCE)BE.1943-5592.0000237</p><p> 1PhD Candidate, Dept. of Civil and Environmental Engineering
3、, American Univ. of Beirut; formerly, Project Engineer at Khatib and Alami, Beirut, Lebanon. Email: fme09@aub.edu.lb </p><p> 2Dept. of Civil and Environmental Engineering, American Univ. of Beirut, Lebanon
4、. Email: mounir@aub.edu.lb </p><p> 3Dept. of Civil Engineering, US Coast Guard Academy, New London, CT 06320 Email: Kassim.M.Tarhini@uscga.edu </p><p> Abstract: This paper presents the resul
5、ts of a 3D finite element study that investigated the effect of multi-presence factor of load reduction factors used in the AASHTO Bridge Design Specifications. Typical one-span, two-equal-span continuous, simply support
6、ed, three- and four-lane reinforced concrete slab highway bridges were selected for this study. AASHTO HS20 design truck loads are first placed transversally in all lanes, positioned side-by-side and close to one edge of
7、 the bridge slab; thi</p><p> Keywords: Concrete slab bridges; Load reduction; Multi-lane multi-span bridges; Finite element analysis; AASHTO Standard Specifications and LRFD. </p><p> Introdu
8、ction </p><p> According to the U.S. Federal Highway Administration.s (FHWA) National Bridge Inventory data, 23.7% of the nation.s 597,787 bridges are structurally deficient or functionally obsolete as repo
9、rted in Better Roads Magazine 2009. Also, the Portland Cement Association (PCA) 2008 reported that out of the 139,031 reinforced concrete bridges, 29.3% are considered structurally deficient or functionally obsolete. The
10、 high number of deficient bridges means that a considerable number of bridges are being r</p><p> Reinforced concrete slab bridges offer economic alternatives for short-span bridges in the United States and
11、 particularly in developing countries where cast-in-place concrete is common practice. The main advantage of cast-in-place concrete slab bridges is the ability to field adjustment of the roadway profile during constructi
12、on. Typically, the design of highway bridges in the United States must conform to the American Association of State Highway and Transportation Officials (AASHTO) Standard S</p><p> AASHTO permits a reductio
13、n in live-load intensity on a bridge deck due to the improbability of having all lanes of bridge superstructure loaded simultaneously. These live-load reduction factors are used to account for the probability of having a
14、ll lanes loaded at the same time and at locations along the bridge deck producing the maximum bending moment in an element of a bridge superstructure. AASHTO Standard Bridge Specifications and LRFD procedures specify tha
15、t results obtained from analyses of</p><p> and dated the various changes in the AASHTO Standard Specifications over the years and noted that these reduction factors were originally introduced in 1941 in th
16、e third edition. However, Sanders (1984) also reported that the greatest confusion appears to be in the appropriateness of using the provisions of reduction in load intensity for determining the design bending moments in
17、 a girder. Some engineers permit the reduction of live load, while others do not. Taly (1996) reported that bridge des</p><p> The load reduction on steel girder bridges was investigated by Mabsout et al. (
18、2002). In this study, a parametric study was conducted to assess the effect of multiple-presence design trucks on wheel-load distribution for bending moments and deflections in three- and four-lane bridges. The results o
19、f bridge cases with reduced truck loading were compared to fully-loaded bridges and assessed with AASTHO procedures. </p><p> Mabsout et al. (2004) reported the results of a parametric investigation using t
20、he 3D finite element analysis (FEA) of straight, single-span, simply supported reinforced concrete slab bridges. The study considered various span lengths and slab widths, varied number of lanes, and varied live loading
21、conditions for bridges with and without shoulders. Longitudinal bending moments and deflections in the concrete slab were evaluated and compared with procedures specified by AASHTO. Further, Awwad et </p><p>
22、; This paper presents the results of a deterministic parametric study investigating the effect of multiple-presence of HS20 trucks on bending moments and deflections in three- and four-lane reinforced concrete slab brid
23、ges using the general computer program SAP2000 (2007). A total of 60 distinct bridge cases were modeled using three-dimensional (3D) finite element analysis subject to static wheel loading. Various bridge parameters inve
24、stigated in this study were span length, single span, continuou</p><p> AASHTO Standard Specifications for Highway Bridges </p><p> For simply supported concrete slab bridges, AASHTO Standard
25、Specifications (2002) </p><p> suggest three approaches in determining the live-load bending moment for HS20 design truck loading. One simple approach used by AASHTO (Section 3.24.3.2) provides empirical eq
26、uations for the design moment in the slab and will be adopted in this study as described below: </p><p> In SI units: </p><p> M = 13,500 x S for S≤ 15 m (1a) </p><p> M = 1,000(
27、19.5 x S - 90) for S > 15 m (1b) </p><p> which, in US units, are equivalent to: </p><p> M = 900 x S for S ≤ 50 ft (2a) </p><p> M = 1,000(1.30 x S - 20) for S > 50 ft (2b
28、) </p><p> where S = span length [m for Eq. (1) or ft for Eq. (2)]; </p><p> and M = longitudinal bending moment per unit width [N-m/m Eq. (1) or lb-ft/ft Eq. (2)]. </p><p> Furt
29、hermore, AASHTO Section 3.24.8 requires edge beams along the free edges of the concrete slab bridges. The live-load bending moment in an edge beam is specified by the expression: 0.1PS (where P=72 KN or 16 kips for HS20
30、truck). AASHTO does not specify a width for the edge beam. However, some departments of transportation (such as Ohio) suggest the use of an edge beam width of 450 mm (18 inches). For continuous spans, according to AASHTO
31、 (Section 3.24.8.3), the edge beam moment calculated for</p><p> The concrete slab thickness was calculated to control the live-load deflection according to AASHTO Section 8.9.2; the minimum slab thickness
32、h (mm) for bridges with main reinforcement parallel to traffic is 1.2(S+3,000)/30, which is equivalent, in US units (ft), to 1.2(S+10)/30. The maximum FEA live-load deflection was compared with the AASHTO Section 8.9.3.1
33、 deflection criterion of S/800. Finally, AASHTO Section 3.12.1 specifies that results obtained from the analyses of three- and four-lane br</p><p> AASHTO LRFD Bridge Design Specifications </p><p
34、> AASHTO LRFD (2007) Section 4.6.2.3 provides an equivalent strip width to design reinforced concrete slab bridges similar to the AASHTO Standard Specifications. This simplistic approach is to divide the total static
35、al moment by the equivalent width to achieve a moment per unit width. The moments are determined by establishing the structural width per design lane. The equivalent width E of longitudinal strips per lane for both shear
36、 and moment is determined using the following formulas: </p><p> Width for one lane loaded is: </p><p> E = 250 + 0.42(L1 x W 1) 1 /2 (3a) </p><p> E = 10 + 5(L1 x W 1) 1 /2 (3b)
37、 </p><p> Width for mult i-lanes loaded is: </p><p> E = 2,100 + 0.12(L1 x W 1) 1 /2 (4a) </p><p> E = 84 + 1.44(L1 x W1)1 / 2 (4b) </p><p> where “E” is in mm in E
38、qs. (3a) and (4a) [inches in Eqs. (3b) and (4b)]; L1= span length in mm (or ft), the lesser of the actual span or 18,000 mm (60 ft); W1=edge-to-edge width in mm (or ft) of bridge taken to be the lesser of the actual wid
39、th or 18,000 mm (60 ft) for multi-lane loading, or 9,000 mm (30 ft) for single-lane loading. </p><p> AASHTO LRFD Section 3.6.1.2 live load HL93 requires the consideration of lane loading plus HS20 design t
40、ruck or lane loading plus tandem. The design lane loading consists of a uniformly distributed load in the longitudinal direction of 9.3 KN/m (0.64 Kip/ft) and occupying 3 m (10 ft) transversally. The bending moment is de
41、termined for the design lane and is then divided by the width E to determine the design moment per unit width. </p><p> AASHTO LRFD edge beam moment (Section 4.6.2.1.4b) shall be assumed to support one line
42、 of wheel load and a tributary portion of the design lane load. The effective width is considered to be the sum of the distance between the edge of the deck and the inside face of barrier (assumed equal to 30 cm or 1 ft)
43、, plus 30 cm (1 ft), plus one quarter of the strip width calculated above, but shall not exceed either one-half the full strip width 1.8 m or (6 ft). </p><p> AASHTO LRFD Table 2.5.2.6.3-1 provides the mini
44、mum slab thickness “h” for </p><p> deflection control to be 1.2(S +3,000)/30, where “h” and “S” are in mm, which is similar to the AASHTO Standard Specifications equation 1.2(S+10)/30 (ft). The same criter
45、ion of S/800 will be used to assess live load deflections. According to AASHTO LRFD Section 3.6.1.12, the extreme live-load force effect shall be determined by placing live loads in all lanes and then reduced by using mu
46、ltiple-presence factors of 0.85 and 0.65 for three and four lanes respectively, to account for the probability</p><p> ?。绹鴩夜放c運輸協(xié)會)關于鋼筋混凝土板橋活荷載簡化的研究</p><p> 作者:F. El Me sk i 1; M. Mabsout 2 ;
47、 and K. Tarhini3</p><p> 出處:橋梁工程雜志 提交于2010年7月30日,審批于2011年2月24日;2011年3月2日頭條出版;標識符:10.1061/ASCE(美國土木工程協(xié)會).BE(教育部).1943-5592.0000237</p><p> 1.博士候選人,貝魯特美國大學,土木與環(huán)境工程專業(yè);前黎巴嫩首都貝魯特Khatib 和Alami項目工程師
48、;郵箱地址:fme09@aub.edu.1b</p><p> 2.黎巴嫩貝魯特美國大學,土木與環(huán)境工程專業(yè);郵箱地址:mounir@aub.edu.1b</p><p> 3.新倫敦美國海岸警衛(wèi)學院,土木工程專業(yè),建筑水電安裝06320,郵箱地址:Kassim.M.Tarhini@uscga.edu</p><p> 摘要:本文章主要介紹美國國家公路與運輸協(xié)
49、會橋梁設計規(guī)范中,分析調(diào)查影響活載折減系數(shù)的多方面因素的一個三維有限元分析研究結果。典型的單跨體系,兩跨(等跨)連續(xù)體系,簡支體系,三車道以及四車道鋼筋混凝土公路板橋均被收錄到本研究。美國國家公路與運輸協(xié)會HS20(半強度)設計中車輛荷載首先被橫向并排分布在所有車道,且貼近于橋面板邊緣,這樣的完全加載條件可作為一個參考方案。荷載簡化模式是將設計荷載分別加載到三分之二車道(減少2 / 3),四分之三車道(減少3/4)以及四分之二車道(減少
50、2/4)上,然后利用三維有限元分析。簡化模式下的有限元分析可得到橋的縱向彎矩和撓度結果,并且與橋梁滿載情況進行了直接對比。此外,荷載折減工況和(美國國家公路與運輸協(xié)會)設計規(guī)范中的折減系數(shù)或者多方面因素之間的相關性也被考慮到混凝土板橋設計當中。對于三車道和四車道橋的情況,(美國國家公路與運輸協(xié)會)標準規(guī)范中通常將(荷載折減模式下)有限元分析最大彎矩值跟邊梁彎矩值分別偏高估算15%和30%,或者掌握好兩者間的相關性。這樣的偏高估算在短跨橋
51、中體現(xiàn)的更為明顯。建議(荷載)折減(系數(shù))25%的工況僅在鋼筋混凝土板橋跨徑超過</p><p> 關鍵詞:混凝土板橋;簡化荷載;多車道、多跨橋;有限元分析;美國國家公路與運輸協(xié)會標準規(guī)范、荷載及阻力因子設計</p><p> 介紹:根據(jù)美國美國聯(lián)幫公路管理署(FHWA)國家橋梁數(shù)據(jù)庫顯示,正如雜志《Better Roads 》在2009年的報道一樣,全美597787座橋梁中有23.7
52、%的橋存在結構缺陷或者功能過時(現(xiàn)象)。同時,波特蘭水泥協(xié)會(PCA)在2008年報道139031座鋼筋混凝土橋中的29.3%被認為存在結構缺陷或者功能過時。大量存在缺陷的橋梁意味著有相當數(shù)量的橋要被責令限制載重、修復、拆除或者新建。</p><p> 在美國,鋼筋混凝土板橋是短跨橋經(jīng)濟型的選擇,尤其對于那些把襯砌混凝土當做常用方法的發(fā)展中國家。襯砌混凝土板橋的主要優(yōu)點在于施工過程中可以現(xiàn)場調(diào)整橋形。一般來說,
53、美國公路橋梁的設計必須遵循美國國家公路與運輸協(xié)會公路橋梁標準規(guī)范2002,或者遵循橋梁荷載及阻力因子設計規(guī)范2007。任何公路橋的設計及分析都必須考慮車道荷載和車輛荷載。但是,當考慮美國國家公路與運輸協(xié)會標準規(guī)范時,車輛荷載適用于短跨橋。規(guī)范中指定一個公路橋荷載的分布寬度以減小存在于梁體中的單向或者雙向彎曲問題。間接地,就證明了一個活荷載彎矩經(jīng)驗表達式。因此,鋼筋混凝土板橋也就被設計成為一系列帶狀梁體。美國國家公路與運輸協(xié)會標準規(guī)范設計
54、程序在20世紀初期到中期基于Westergaard (1926, 1930),Jensen (1938, 1939),以及Newmark (1948)的調(diào)查研究工作,得到初步發(fā)展。美國國家公路與運輸協(xié)會荷載及阻力因子橋梁設計規(guī)范的目標是發(fā)展全面的規(guī)定,并且為所有橋梁結構制定出更加統(tǒng)一的安全限度。</p><p> 介于不可能在橋梁上部結構所有車道同時加載,美國國家公路與運輸協(xié)會允許降低加載到橋面的活荷載強度。這
55、些活荷載減小因素被用于解釋在同一橋梁結構元素下所有車道同時加載并且沿橋面位置產(chǎn)生最大彎矩的可能性。美國國家公路與運輸協(xié)會橋梁標準規(guī)范和荷載及阻力因子設計程序規(guī)定,由全部車道同時加載的三車道以及四車道橋面板分析所得公認結果,須得乘以折減系數(shù)。Sanders (1984)總結并列舉了近年來美國國家公路與運輸協(xié)會標準規(guī)范的一系列變更,同時還提到折減系數(shù)這一概念最初是在1941年第三版中產(chǎn)生。然而,Sanders (1984)也同樣報道:最大的
56、疑惑似乎是確定主梁設計彎矩時如何適度應用規(guī)定的荷載強度折減。有工程師支持活荷載折減的同時,也有工程師在反對。據(jù)Taly (1996)報道:橋梁設計者不同意美國國家公路與運輸協(xié)會關于為橋梁可承載多于兩車道時縱向梁活載折減提出的合理解釋。Mabsout et al. (2002)研究了鋼梁橋的荷載折減,在這個研究中,為估算三車道、四車道橋梁在多重存在的設計車輛輪壓分布對其彎矩和撓度的影響而進行了一項參數(shù)研究。這一車輛荷載折減的橋梁實例,由美
57、國國家公路與運輸協(xié)會設</p><p> Mabsout et al. (2004)報道了利用三維有限元分析單跨鋼筋混凝土簡支板直橋變量研究現(xiàn)結果。這項研究被認為是集各種橋跨長度以及橋面板寬度,多種車道數(shù)量和各種加載條件于一橋(有路肩和沒有路肩的)?;炷涟宓目v向彎矩和撓度得到了估算,并且與美國國家公路與運輸協(xié)會所規(guī)定的設計程序進行了對比。此外,Awwad et al. (2008)還報道了一項影響輪壓在簡支體
58、系、兩跨體系、單車道和雙車道鋼筋混凝土板直橋上連續(xù)分布的初步變量研究有限元分析結果。這項研究被認為是集各種跨徑長度、車道數(shù)(單車道和雙車道)以及活荷載條件于一橋(沒有路肩的)。</p><p> 本文章介紹用一般計算機程序SAP2000 (2007)計算的三車道和四車道鋼筋混凝土板橋,在多重汽車荷載(HS20)作用下,對其彎矩以及撓度的影響這一確定性參數(shù)研究。共列舉了60個不同的橋梁實例,均以靜態(tài)輪壓為條件進行
59、三維有限元分析。諸如跨徑長度、單跨體系、兩跨等跨連續(xù)體系以及在三車道、三分之二車道、四車道、四分之三車道、四分之二車道上布置設計活荷載產(chǎn)生的最大縱向彎矩。為了它們對輪壓分布的影響,這些參數(shù)均被列入實用范圍。最大彎矩和撓度用三維有限元分析計算得到,對荷載分布的影響從滿載和荷載折減(兩種情況)的三維橋梁實例對比中得到,且這些結果會同美國國家公路與運輸協(xié)會標準規(guī)范(二維)及荷載及阻力因子設計程序進行對照。</p><p&g
60、t; 美國國家公路與運輸協(xié)會公路橋梁標準規(guī)范</p><p> 對于簡支混凝土板橋,美國國家公路與運輸協(xié)會標準規(guī)范(2002)中建議了確定活荷載(HS20設計車輛荷載)彎矩時的三種方法。AASHTO規(guī)范(章節(jié)3.24.3.2)中用到的一種簡便方法為即將安裝的梁板提供了如下所述計算設計彎矩的經(jīng)驗公式:</p><p><b> 國際制單位:</b></p&g
61、t;<p> M=13500×S,其中S ≤ 15 米(1a)</p><p> M=1000(19.5×S-90),其中S > 15 米(1b)</p><p> 用美國通用單位時,上式等效于:</p><p> M=900 ×S,其中S ≤ 50 英尺 (2a)</p><p>
62、 M=1000(1.30 ×S-20),其中S > 50 英尺 (2b)</p><p> 式中S=跨徑長度(單位為米用式1a,單位為英尺用式2a);M=單位寬度的縱向彎矩(單位為Nm/m用式1b,單位為bft/ft用式2b)</p><p> 此外,美國國家公路與運輸協(xié)會標準規(guī)范章節(jié)3.24.8還對混凝土板梁橋沿不受約束的邊界的邊梁做出了要求,邊梁的活荷載彎矩利用如下
63、表達式確定:0.1PS(對于HS20車輛荷載,P= 72 千牛 或者 16 千磅),規(guī)范并未指定邊梁的寬度。然而,一些交通部門(如在俄亥俄州)卻建議使用邊梁寬度450毫米(18英寸)。對于連續(xù)多跨的梁橋,根據(jù)美國國家公路與運輸協(xié)會標準規(guī)范(章節(jié)3.24.8.3),邊梁彎矩的計算應在簡單跨徑基礎上減小20%到0.08PS,否則除非從更好詳細的分析中得到更好的簡化結果。</p><p> 根據(jù)美國國家公路與運輸協(xié)會
64、標準規(guī)范(章節(jié)8.9.2)計算混凝土板的厚度,從而控制活荷載撓度。隨交通量(變化)增大的最小板厚h(單位毫米)按1.2(跨徑+3,000)/30計算,等效于以英尺為單位1.2(跨徑+10)/30,且將有限元分析活荷載最大撓度值與美國國家公路與運輸協(xié)會標準規(guī)范(章節(jié)8.9.3.1)S/800的撓度準則相對比。最后,規(guī)范(章節(jié)3.12.1)明確指出,從分析全部車道同時加載的三車道、四車道橋面板得到的結果,可分別減少10% and 25%(也
65、即乘以0.90和0.75)。</p><p> 美國國家公路與運輸協(xié)會橋梁荷載及阻力因子設計規(guī)范</p><p> 美國國家公路與運輸協(xié)會橋梁荷載及阻力因子設計規(guī)范(2007)4.6.2.3章節(jié)中提供了一種類似美國國家公路與運輸協(xié)會標準規(guī)范中設計鋼筋混凝土板橋等效分解寬度。這種簡便方法是將總的力矩(彎矩)變量劃分成等效寬度,以得到每單位寬度上的力矩(彎矩)。這個力矩(彎矩)值通過建立每
66、個設計車道結構寬度確定,針對于剪力和彎矩,每條車道縱向板條的等效寬度E有以下公式來確定:</p><p> 單車道加載等效寬度是:E = 250 + 0.42(L1 x W 1) 1 /2 (3a) </p><p> E = 10 + 5(L1 x W 1) 1 /2 (3b)</p><p> 多車道加載等效寬度是:E = 2,100 + 0.12(L1
67、x W 1) 1 /2 (4a) </p><p> E = 84 + 1.44(L1 x W1)1 / 2 (4b)</p><p> 式中:E在公示(3a) 和 (4a)中單位為毫米,在公示(3b) 和 (4b)中單位為英寸;L1=橋跨長度(單位毫米或英尺),實際跨徑小于或等于18,000 毫米 (60 英尺);</p><p> W1=多車道加載時實際跨
68、徑小于等于18,000 毫米 (60 英尺),或者單車道加載時實際跨徑小于等于9,000 毫米(30 英尺)橋梁的橋面凈空,單位毫米(或英尺)。</p><p> 美國國家公路與運輸協(xié)會橋梁荷載及阻力因子設計規(guī)范章節(jié)3.6.1.2HL93活荷載要求考慮車道荷載加上HS20設計車輛荷載或者車道荷載加上非機動車荷載。設計車道荷載是由橫向分布3m (10 英尺),縱向9.3 KN/m (0.64 Kip/ft)的均布
69、荷載組成。為設計車道而確定的彎矩,之后被等效寬度分解,以確定每單位寬度上的設計彎矩。</p><p> 美國國家公路與運輸協(xié)會橋梁荷載及阻力因子設計規(guī)范(章節(jié)4.6.2.1.4b),邊梁彎矩將被假設承受一列輪壓和部分設計車道荷載。有效寬度被認為是橋面板邊緣到護欄內(nèi)側距離(假設等于30厘米或者1英尺),加上30厘米(1英尺),再加上上面已經(jīng)計算出的橋面板帶寬度的四分之一得總和,但不應超過板帶全寬的一半1.8米或者
70、6英尺。</p><p> 美國國家公路與運輸協(xié)會橋梁荷載及阻力因子設計規(guī)范中表2.5.2.6.3-1為將撓度控制在1.2(S +3,000)/30,而提供了板厚最小值h,這里的“h”和“S”均與美國國家公路與運輸協(xié)會標準規(guī)范公式1.2(S+10)/30 (ft)中的相類似,S/800同樣的標準將被用于對活荷載撓度的評估。根據(jù)美國國家公路與運輸協(xié)會橋梁荷載及阻力因子設計規(guī)范章節(jié)3.6.1.12,將三車道和四車道
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- [雙語翻譯]--土木工程外文翻譯--關于鋼筋混凝土板橋活荷載簡化的研究
- 2011年--土木工程外文翻譯--關于鋼筋混凝土板橋活荷載簡化的研究
- 2011年--土木工程外文翻譯--關于鋼筋混凝土板橋活荷載簡化的研究(譯文).doc
- 2011年--土木工程外文翻譯--關于鋼筋混凝土板橋活荷載簡化的研究(原文).pdf
- 土木外文翻譯--- 鋼筋混凝土
- 土木外文翻譯--高溫下鋼筋混凝土中鋼筋的性能
- 土木外文翻譯--高溫下鋼筋混凝土中鋼筋的性能
- 土木外文翻譯--高溫下鋼筋混凝土中鋼筋的性能
- 鋼筋混凝土外文翻譯
- 鋼筋混凝土外文翻譯
- 土木外文翻譯--高溫下鋼筋混凝土中鋼筋的性能.doc
- 土木外文翻譯--高溫下鋼筋混凝土中鋼筋的性能.doc
- 土木工程外文文獻翻譯---鋼筋混凝土
- 土木工程外文資料翻譯--混凝土與鋼筋混凝土的特性
- 土木工程外文資料翻譯---混凝土與鋼筋混凝土的特性
- 土木工程類外文文獻翻譯---鋼筋混凝土
- 外文翻譯--爆炸荷載作用下鋼筋混凝土板的失效分析
- 土木外文翻譯--通過再堿化技術增加鋼筋混凝土的使用
- 土木工程專業(yè)畢業(yè)設計外文翻譯--鋼筋混凝土結構中鋼筋連接綜述
- [雙語翻譯]--橋梁工程外文翻譯--斜交角對鋼筋混凝土梁板橋的影響
評論
0/150
提交評論