版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 外文文獻原文</b></p><p> Helical,Worm and Bevel Gears</p><p> In the force analysis of spur gars, the forces are assumed to act in a single plain. In this lesson we shall s
2、tudy gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are
3、 not parallel to each other. There are other reasons, as we shall learn.</p><p> Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear mus
4、t have a right—hand helix and the other a left—hand helix. The shape of the tooth is an involute helicoids. If a piece of paper cut in the shape of a parallclogram is wrapped around a cylinder, the angular edge of the p
5、aper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edg</p><p> The initial contact of spur—gear teeth is
6、a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point,which changes into a line as the teeth come into more engagement. In spur gears the line of contact is paral
7、lel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth.It is this gradual engagement of the teeth and the smooth transfer of load from one tooth to another ,which give helica
8、l gears the abilit</p><p> Crossed—helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical gears have point contact with each o
9、ther, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission
10、of power. There is no difference between a crossed helical gear and a helical gear until they are mou</p><p> Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth,
11、 usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a
12、high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvatu</p><p> Worn gearing
13、are either single or double enveloping. A single enveloping gearing is one in which the gear wraps around or partially encloses the worm, A gearing in which each element partially encloses the other is, of course, a doub
14、le enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double enveloping gears while only line contact between those of single-enveloping gears. The worm and
15、 worm gear of a set have the same hand of helix</p><p> When gears are to be used to transmit motion between intersecting shafts, some form of bevel gear is required. Although bevel gears are usually made f
16、or a shaft angle of 9O deg., they may be produced for almost any shaft angle. The teeth may be east, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the
17、 gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect </p><p> Straight bevel gears are easy to design and simple to manufacture a
18、nd give very good results in service if they are mounted accurately and positively. As in the case of spur gears, however, they become noisy at higher values of the pitch-line velocity. In these eases it is often good de
19、sign practice to go to ~he spiral bevel gear, which is the bevel counterpart of the helical gear, as in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, an</p&
20、gt;<p> It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch
21、 surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears</p><p> SAND CASTIN
22、G</p><p> Most metal casting are made by pouring molten metal into a prepared cavity and allowing it to solidify. The process dates from antiquity. The largest bronze statue in existence to-day is the great
23、 Sun Buddha in Nara, Japan. Cast in the eighth century, it weighs 551 tons(500 metric tons) and is more than 71 ft (21m) high. Artisans of the Shang Dynasty in China ( 1766 - 1222B. C. ) created art works of bronze with
24、delicate filigree as sophisticated as anything that is designed and produced today.</p><p> There are many casting processes available today, mid selecting the best one to produced particular part depends o
25、n several basic factors, such as cost, size. production rate. finish, tolerance, section thickness, physical-mechanical properties, intricacy of design mach inability, and weld ability.</p><p> Sand casting
26、. the oldest and still the most widely used casting process. will be presented in more detail than the other processes since many of the concepts carry over into those processes as well.</p><p> Green Sand
27、 </p><p> Green sand generally consists of silica sand and additives coated by rubbing the sand grains together with clay uniformly wetted with water. More stable and refractory sands have been develope
28、d, such as fused silica, zircon, and mullets, which replace lower-cost silica and have only 2% linear expansion at ferrous metal temperatures. Also, relatively un-stable water and clay bonds are being replaced with synt
29、hetic resins, which are much mores table at elevated temperatures.</p><p> Green sand molding is used to produce a wide variety of castings in sizes of less than around to as large as several tons. This ver
30、satile process is applicable to both ferrous and nonferrous materials.</p><p> Green sand can be used to produce intricate molds since it provides for rapid collapsibility: that is, the mold is much less re
31、sistant to the contraction of the casting as it solidifies than are other molding processes. This results in less stress and strain in the casting.</p><p> The sand is rammed or compacted around the pattern
32、 high a variety of methods, including hand or pneumatic-tool ramming, jolting (abrupt mechanical shaking), squeezing (com-pressing the top and bottom mold surfaces), and driving the sand into the mold at high velocities
33、(sad slinging). Sand slings are usually resented for use in making very large casting where great volumes of sand are handled.</p><p> For smaller casting, a two-part metal box or flask referred to as a cop
34、e and drag issued. First the pattern is positioned on a mold board. and the drag or lower half of the flask is positioned over it. Parting powder is sprinkled on the paten and the box is filled with sand. A jolt squeeze
35、machine quick]y compacts the sand. The flask is then turned over and again parting powder is dusted on it. The cope is then positioned on the top half of the flask and is filled with sand, and the two-part mol</p>
36、<p><b> Patterns</b></p><p> Patterns for sand casting have traditionally been made of wood or metal. However, it has been found that wood patterns change as much as 3% due to heat and mo
37、isture. This factor alone would put many casting out of acceptable tolerance for more exacting specifications. Now, patterns are often made from epoxies and from cold-setting rubber with stabilizing inserts. Patterns of
38、simple design, with one or more flat surface, can be molded in one piece, provided that they can be withdrawn without dist</p><p> Spruces, Runners, and Gates.</p><p> Access to the mold cavit
39、y for entry of the molten metal is provided by sprees, runners, and gates, as shown in Fig. 7 I. A pouring basin can be carved in the sand at the top of the spree, or a pour box, which provides a large opening, may be la
40、id over the spree to facilitate pouring. After the metal is poured, it cools most rapidly in the sand mold. Thus the outer surface forms a shell that permits the still molten metal near the center to flow toward it. As a
41、 result, the last portion of the cas</p><p><b> Cores</b></p><p> Cores are placed in molds wherever it is necessary to preserve the space it occupies in the mold as a void in the
42、resulting castings. As sown in Fig.7-1, the core will be put in place after the pastern is removed. To ensure its proper location, the pattern has extensions known as core prints that leave cavities in the mold into whic
43、h the core is seated. Sometimes the core may be molded integrally with the green sand and is then referred to as a green-sand core. Generally, the core is made of san</p><p><b> CO2 Cores</b><
44、;/p><p> CO2 cores are made by ramming up moist sand in a core box. Sodium silicate is used as a binder, which is quickly hardened by blowing CO2 gas over it. The C02 system has the advantage of making the cor
45、es immediately available.</p><p> Pouring the Metal</p><p> Several types of containers are used to move the molten metal from the furnace to the pouring area. Large castings of the floor-and-
46、pit type are poured with a ladle that has a plug in the button, or, as it is called, a bottom-pouring ladle. It is also employed in mechanized operations where the molds are moved along a line and each is poured as it is
47、 momentarily stopped beneath the large bottom-pour ladle.</p><p> ladles used for pouring ferrous metals are lined with a high alumina-content refractory. After long use and oxidation, it can be broken out
48、and replaced. Ladles used in handling ferrous metals most be preheated with gas flames to approximately 2600° to 2700°F ( 1427° to 1482°C) before filling. Once the ladle is filled, it is used constant
49、ly until it has been emptied.</p><p> For nonferrous metals, simple clay-graphite crucibles are used. While they are quite susceptible to breakage, they are very resistant to the metal and will hold up a lo
50、ng time under normal condition. They usually do not require preheating, although care must he taken to avoid moisture pickup. For this reason they are sometimes baked out to assure dryness.</p><p> The pour
51、ing process must he carefully controlled, since the temperature of the melt greatly affects the degree of liquid contraction before solidification, the rate of solidification, which in turn affects the around of columnar
52、 growth present at the mold wall, the extent and nature of the dendrite growth, the degree of alloy burnout, and the feeding characteristics of the rise ring system.</p><p> Finishing Operations</p>
53、<p> After the castings have solidified and cooled somewhat. they are placed on a shakeout table or grating on which the sand mold is broken up, leaving the casting free to be picked out. The casting is then taken
54、to the finishing room where the gates and risers are removed. Small gates and risers may he broken off with a hammer if the material is bride. Larger ones requiem sawing, cutting with a roach, or shearing. Unwanted metal
55、 protrusions such as fins, bosses, and small portions of gates and rise</p><p><b> 譯文</b></p><p> 斜齒輪蝸桿蝸輪和錐齒輪</p><p> 在直齒圓柱齒輪的受力分析中,是假定各力作用在單一平面的。在這一課題中,我們將研究作用力具有三維坐
56、標(biāo)的齒輪。因此,在斜齒輪的情況下,其齒向是不平行于回轉(zhuǎn)軸線的。而在錐齒輪的情況中各回轉(zhuǎn)軸線互相不平行。像我們將要討論的那樣,尚有其他道理需要學(xué)習(xí)、掌握。</p><p> 斜齒輪用于傳遞平行軸之間的運動。傾斜角度每個齒輪都一樣,但一個必須右旋斜齒,而另一個必須是左旋斜齒。齒的形狀是一漸開線螺旋面。如果一張被剪成平行四邊形(矩形)的紙張包圍在齒輪圓柱體上,紙上印出齒的角刃邊就變成斜線。如果我展開這張紙,在斜角刃邊
57、上的每一個點就發(fā)生一漸開線曲線。</p><p> 直齒圓柱齒輪輪齒的初始接觸處是跨過整個齒面而伸展開來的線。斜齒輪輪齒的初始接觸是一點,當(dāng)齒進入更多的嚙臺時,它就變成線。在直齒圓柱齒輪中,接觸線是平行于回轉(zhuǎn)軸線的。在斜齒輪中,該線是跨過齒面的對角線。它是輪齒逐漸進行嚙臺并平穩(wěn)地從一個齒到另一個齒傳遞運動,那樣就使斜齒輪具有高速重載下平穩(wěn)傳遞運動的能力。斜齒輪使軸的軸承承受徑向和軸向力。當(dāng)軸向推力變得大了或由于
58、別的原因而產(chǎn)生某些影響時,那就可以使用人字齒輪。雙斜齒輪(人字齒輪)是與反向的并排地裝在同一軸上的兩個斜齒輪等敬。他們產(chǎn)生相反的軸向推力作用,這樣就消除了軸向推力。當(dāng)兩個或更多的單向齒斜齒輪被裝在同一軸上時,齒輪的齒向應(yīng)作選擇,以便產(chǎn)生最小的軸向推力。</p><p> 交錯軸斜齒輪或螺旋齒輪,他們的軸中心線既不相交也不平行。交錯軸斜齒輪的齒彼此之間發(fā)生點接觸,它隨著齒輪的磨合而變成線接觸。因此他們只能傳遞小的
59、載荷和主要用于儀器設(shè)備中,而且肯定不能推薦在動力傳動中使用。交錯軸斜齒輪與斜齒輪之間在被安裝后互相嚙合之前是沒有任何區(qū)別的。它們是以同樣的方法進行制造。一對相嚙合的交錯軸斜齒輪通常具有同樣的齒向,即左旋主動齒輪跟右旋從動齒輪相嚙舍。在交錯軸斜齒設(shè)計中,當(dāng)該齒的斜角相等時所產(chǎn)生滑移速度最小。然而當(dāng)該齒的斜角不相等時,如果兩個齒輪具有相同齒向的話,大斜角齒輪應(yīng)該用作主動齒輪。</p><p> 蝸輪與交錯軸斜齒輪相
60、似。小齒輪即蝸桿具有較小的齒數(shù),通常是一到四齒.由于它們完全纏繞在節(jié)圓柱上,因此它們又被稱為螺紋齒。與其相配的齒輪叫做蝸輪,蝸輪不是真正的斜齒輪。蝸桿和蝸輪通常是用于向垂直相交軸之間的傳動提供大的角速度減速比。蝸輪不是斜齒輪,因為其齒頂面做成中凹形狀以適配蝸桿曲率,目的是要形成線接觸而不是點接觸。然而蝸桿蝸輪傳動機構(gòu)中存在齒問有較大滑移速度的缺點,正像變錯軸斜齒輪那樣。 蝸桿蝸輪機構(gòu)有單包圍和雙包圍機構(gòu)。單包圍機構(gòu)就是蝸輪包裹著蝸
61、桿或部分地包圍著蝸桿的一種機構(gòu)。當(dāng)然,如果每個構(gòu)件各自局部地包圍著對方的蝸輪機構(gòu)就是雙包圍蝸輪蝸桿機構(gòu)。這兩者之間的重要區(qū)別是,在雙包圍蝸輪組的輪齒間有面接觸,而在單包圍蝸輪組的輪齒間只有線接觸。一個裝置中的蝸桿和蝸輪正像交錯軸斜齒輪那樣具有相同的齒向,但是其斜齒齒角的角度是極不相同的。蝸桿上的齒斜角度通常很大,而蝸輪上的則極小。因此慣常規(guī)定蝸桿的導(dǎo)角,那就是蝸桿齒斜角的余角;也規(guī)定了蝸輪上的齒斜角,該兩角之和就等于90。的軸線交角。
62、 當(dāng)齒輪要用來傳遞相交軸之網(wǎng)的運動時,就需要某種形式的錐齒輪。雖然錐齒輪通常制造成能構(gòu)成90度軸</p><p> 另外一個難題,發(fā)生在難于預(yù)示錐齒輪輪齒上的應(yīng)力.實際上是由于輪齒被加工成錐狀造成的。</p><p> 直齒錐齒輪易于設(shè)計且制造簡單,如果他們安裝的精密而確定,在運轉(zhuǎn)中會產(chǎn)生良好效果。然而在直齒圓柱齒輪情況下,在節(jié)線速度較高時,他們將發(fā)出噪音。在這些情況下,通常設(shè)計使
63、用螺旋錐齒輪,實踐證明是切實可行的,那是和配對斜齒輪很相似的配對錐齒輪。當(dāng)在斜齒輪情況下,螺旋錐齒輪比直齒輪能產(chǎn)生平</p><p> 穩(wěn)得多的嚙合作用,因此碰到高速運轉(zhuǎn)的場合那是很有用的。當(dāng)在汽車的各種不同用途中,有一個帶偏心軸的類似錐齒輪的機構(gòu),那是常常所希望的。這樣的齒輪機構(gòu)叫做準(zhǔn)雙曲面齒輪機構(gòu),因為他們的節(jié)面是雙曲回轉(zhuǎn)面。這種齒輪之間的輪齒作用是沿著一根直線上產(chǎn)生滾動與滑動相結(jié)合的運動并和蝸輪蝸桿的輪齒
64、作用有著更多的共同之處。</p><p><b> 砂型鑄造</b></p><p> 大多數(shù)金屬鑄件。是通過將熔化的金屬注入預(yù)先做好的型腔凝固而成的,這</p><p> 種方法可溯及古代, 現(xiàn)存最大的青銅鑄件是日本奈良市的太陽大佛.它鑄于八世紀(jì),重551(美國)叫(500噸).高度超過71英尺(21米) 小國商朝(公元前1766—
65、1222年)的工匠們制造的精美的青銅制品.其復(fù)雜程度可與當(dāng)代設(shè)計制造的工藝品媲美‘</p><p> 目前,有許多鑄造方法,對特定鑄件所選擇的最好的鑄造方法,取決于幾個基本因素。比如成本、尺寸、生產(chǎn)率、光潔度(我國標(biāo)準(zhǔn)名詞術(shù)語現(xiàn)稱作表面粗糙度——譯者)、公差、截面厚度、物理化學(xué)降性、設(shè)計難度、可加工件和可焊件等</p><p> 砂則鑄造是最古老且仍廣泛應(yīng)用的鑄造方法。本文將詳細地介紹
66、這種方法,因為它的許多概念也適用于其他方法</p><p><b> 型砂</b></p><p> 型砂通常含有石英砂和添加劑、通過砂粒與用水均勻濺濕的粘土的攪拌、使砂粒及添加劑表面包復(fù),層粘結(jié)薄膜 更穩(wěn)定耐熔的砂子,如熔融石英砂、鈷土砂、富鋁石砂已開始使用、用來替代低成本石英砂。它們在澆注溫度下僅有2%的線件擴張,問時用在高溫下更穩(wěn)定的合成樹脂來取代相對不穩(wěn)
67、定的水和粘土粘結(jié)劑。</p><p> 型砂鑄型可用來制造重量從小于1磅到幾噸的許多鑄件.可適用于黑色金屬和有色金屬材料、 型砂可用來制造復(fù)雜鑄型.因為它具有很好的退讓性,即鑄型對鑄件凝固時的收縮抗力比其他鑄型要小,這樣鑄件中的應(yīng)力、應(yīng)變就小. 可用許多力法將模型周圍的砂子搗實和壓緊、包括手工壓緊、氣錘壓緊、振動緊實(劇烈地機械振動)、擠壓壓緊(壓緊模型上,下表面)和將型砂高速加入型腔(拋砂)。拋砂
68、機通常用于制造很大的鑄件,此時要用很多型砂。</p><p> 對較小鑄件、使用兩箱(即上箱和下箱)來造型,首先。將模型放在型板上,再將下箱放于板上,在模型上撤分型砂并將砂箱填滿型砂, 振動造型機快速壓緊型砂、然后將砂箱翻轉(zhuǎn)并再在上面撤分型砂,再將上箱放于上面并填滿型砂、將兩箱鑄件壓緊.</p><p><b> 模型</b></p><p&g
69、t; 傳統(tǒng)方法采用木頭和金屬來制造砂型鑄件的模型 然而,已發(fā)現(xiàn)木模因熱量和溫度引起的變化達3%之多,這個因素會使許多有較高精度規(guī)定的鑄件超出了要求的許用公差,現(xiàn)在、模型通常采用環(huán)氧樹脂和帶有穩(wěn)定劑的冷塑化橡膠制造 設(shè)計簡單的含一個或多個平面的模型,如果取模時不破壞壓緊的型砂.可整體造型—對其他模型.當(dāng)用兩箱造型時.模型可分成兩塊或多塊以便從砂中取出。模型必須做出錐度以使取模容易、這個錐度稱為拔模斜度. 當(dāng)零件沒有拔模斜度時、必須另
70、外加上最近對砂型鑄造的模型作的革新是用發(fā)泡聚本乙烯來制造模型、當(dāng)熔化金屬澆入時模型將蒸發(fā) 這種鑄造方法稱為整模造型.模型不需要拔模斜度。</p><p> 直澆道,橫澆道和內(nèi)澆口</p><p> 熔化的金屬可通過直澆道、橫澆道和內(nèi)澆口進入型腔,如圖7—1所示??稍谥睗驳阑驖沧⑾渖喜康男兔胫虚_出一個澆口杯.以提供一個大開口幫助撓注、金屬澆注完后,在砂型中快速冷卻.因此.在外表層形成一
71、個殼體,使中心附近的熔融金屬向表層流動 結(jié)果,鑄件最后凝固的部分會缺少金屬,在缺少補充金屬的情況下.會產(chǎn)生某種形式的縮孔 這鐘縮孔可能是集中縮孔(大孔洞).或者是更多的細微的微扎(分散的縮松) 冒口可以克服這些縮孔,如圖7—]所示、冒口提供了熔融金屆來補充收縮損失</p><p><b> 型芯</b></p><p> 型芯放在鑄型中需要之處、保持空間.以
72、便在最后的鑄件中形成孔洞 如圖7—1所示,型芯將在取走模型后放入.為保證它的正確定位,模型具有稱為型芯頭的外伸端。在鑄型中形成空腔以安放型心 有時型芯可用型砂整體造型,制成型砂測芯.通常,做型芯用的芯砂是用型芯油、一些有機粘結(jié)材料和水將砂于粘在一起,這些材料徹底混合,放在鑄型或型芯箱中, 成型后.拿山來在350°F—450°F(177°C—232°C)溫度下焙燒,含有兩件或多件的型芯在焙燒后粘
73、在一起</p><p><b> CO2型芯</b></p><p> CO2型芯的制成是在型芯箱中預(yù)填濕砂.鈉硅酸酯作為粘結(jié)劑.向其吹CO2氣體時,可使它迅速硬化,CO2系統(tǒng)具有快速制成型芯的優(yōu)點.</p><p><b> 澆注金屬</b></p><p> 可用幾種形式的容器將熔融金屬
74、從爐中移至澆注區(qū),落地式大型鑄件用底部帶有柱塞的鐵水包(或稱為底部澆注鐵水包)澆注、這種鐵水包也用于機械化操作中,鑄型在生產(chǎn)線上移動,到達底部澆注鐵水包下面瞬即停止.進行澆注, </p><p> 用于澆注黑色金屬的鐵水包用高氧化鋁的耐熔物做內(nèi)襯.在長時間使用并氧化后,內(nèi)襯可打碎更換,用來澆注黑色金屬的鐵水包在澆注前必須用氣焰預(yù)熱到2600°F—2700°F(1427°C—148
75、2°C)。一旦鋼水包充滿。要連續(xù)使用自至倒空.對有色金屬,用簡單的粘土石墨坩堝爐來熔化、雖然它們很易破裂,但它們能耐高溫金屬,在正常條件下、可保持很長時間, 它們通常不需預(yù)熱.但必須小心.避免潮濕的影響,因此.有時將它們烘烤以保證干燥. </p><p> 必須小心控制澆注過程,因為熔化溫度大大影響凝固前液態(tài)金屬收縮的程度和凝固速率,并將影響鑄型中針狀物成長的數(shù)量、程度和樹枝狀成長物的性質(zhì),合金熔
76、蝕的程度和冒口系統(tǒng)的補縮持性.</p><p><b> 修整</b></p><p> 在鑄件凝固和冷卻到一定程度后.將它們置于落砂臺上或篩子上.破碎砂型,露出鑄件,以便取出。然后將鑄件拿到修整間,將澆口和冒口除去、對脆性材料,小的澆口和冒口可用錘子敲掉,大的冒口和澆口需要鋸去、用噴焰機切去或者剪去。不需要的金屬凸出物如毛翅、凸臺和小的澆口和冒口需要去除使其表面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 斜齒輪、蝸桿蝸輪和錐齒輪外文文獻翻譯.doc
- 斜齒輪、蝸桿蝸輪和錐齒輪外文文獻翻譯.doc
- 斜齒輪、蝸桿蝸輪和錐齒輪外文文獻翻譯.doc
- 斜齒輪、蝸桿蝸輪和錐齒輪外文文獻翻譯.doc
- 外文翻譯--齒輪和齒輪傳動
- 基于SolidEdge斜齒輪和蝸輪蝸桿的參數(shù)化設(shè)計與精密造型.pdf
- 外文翻譯--齒輪和齒輪傳動
- 直(斜)齒錐齒輪設(shè)計
- 外文翻譯--齒輪和齒輪傳動.doc
- 外文翻譯--齒輪和齒輪傳動.doc
- 齒輪和齒輪傳動外文翻譯.doc
- 齒輪和齒輪傳動外文翻譯.doc
- [雙語翻譯]齒輪設(shè)計外文翻譯--錐齒輪切削中齒輪設(shè)計對刀具載荷的影響
- 外文翻譯--直齒輪斜齒輪的替代性分析設(shè)計方法
- 外文翻譯--直齒輪斜齒輪的替代性分析設(shè)計方法
- [雙語翻譯]齒輪設(shè)計外文翻譯--錐齒輪切削中齒輪設(shè)計對刀具載荷的影響(英文)
- 外文翻譯--直齒輪斜齒輪的替代性分析設(shè)計方法
- 外文翻譯--直齒輪斜齒輪的替代性分析設(shè)計方法.doc
- 外文翻譯--直齒輪斜齒輪的替代性分析設(shè)計方法.doc
- 外文翻譯--直齒輪斜齒輪的替代性分析設(shè)計方法.doc
評論
0/150
提交評論