版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Environmental Impacts of Solid Waste Landfilling</p><p> Abstract:Inevitable consequences of the practice of solid waste disposal in landfills are gas and leachate generation due primarily to mic
2、robial decomposition, climatic conditions, refuse characteristics and landfilling operations. The migration of gas and leachate away from the landfill boundaries and their release into the surrounding environment present
3、 serious environmental concerns at both existing and new facilities. Besides potential health hazards, these concerns include, and are not lim</p><p> Keywords: landfill, solid waste disposal, biodegradatio
4、n, gas and leachate generation, environmental impacts, control methods</p><p> 1.Introduction </p><p> Solid waste disposal in landfills remains the most economic form of disposal in the vast
5、 majority of cases (Thompson and Zandi, 1975; Rushbrook, 1983; Carr and Cossu, 1990). Therefore, landfills will continue to be the most attractive disposal route for solid waste. Indeed, depending on location, up to 95%
6、of solid waste generated world- wide is currently disposed of in landfills (Bingemer and Crutzen, 1987; Cossu, 1989; Nozhevnikova et al., 1992; Gendebien et al., 1992). Alternatives to landfil</p><p> Most
7、organic materials are biodegredable and can be broken down into simpler compounds by aerobic and anaerobic microorganisms, leading to the formation of gas and leachate. The following sections provide an overview of the m
8、echanisms of gas and leachate formation in land?lls, their environmental impacts, and appropriate control methods to eliminate or minimize these impacts.</p><p> 2. Land?ll Gas Formation Mechanisms</p>
9、;<p> At the time of waste deposition in a land?ll, oxygen is present in the void space, giving rise to aerobic decomposition during which biodegradable organic materials react quickly with oxygen to form carbon
10、dioxide, water, and other by-products (e.g. bacterialcells). Carbon dioxide is produced in approximate molar equivalents to the oxygenconsumed. Oxygen depletion within the land?ll marks the onset of the anaerobic decompo
11、siton phase. Although a land?ll ecosystem undergoes an initial short aerob</p><p> Much of what is known or assumed concerning anaerobic processes in land?lls has primarily come from work with anaerobic dig
12、esters. Microbial populations in both environments appear to be similar however, the major di?erence is that the substrates may vary in their relative content of fat, protein, and carbohydrates, and conversely to land?
13、lls, the environment in anaerobic digesters is well controlled and often under optimal conditions.</p><p> Investigators have recognized several major steps to describe the anaerobic de-composition phase du
14、ring which organic materials are converted to methane and carbon dioxide (Alexander, 1971; Zehnder, 1978; Wolfe, 1979; McCarty 1981; Zehnder et al.,1982; Mosey, 1983; Archer and Robertson, 1986; Balba, 1987). These steps
15、 are highly inter-dependent and include hydrolysis, acidogenesis, acetogenesis, and methanogenesis(Figure 1).</p><p> Generally, the breakdown of organic matter in anaerobic ecosystems proceeds</p>&
16、lt;p> sequentially from the complex to the simple starting with the hydrolysis of complex particulate matter to simpler polymers like proteins, carbohydrates and lipids which are further hydrolyzed to yield biomonome
17、rs like amino acids, sugars, and high molecular fatty acids. Amino acids and sugars are converted into either intermediate by-products (e.g. propionic, butyric and other volatile acids) or directly fermented to acetic ac
18、id. High molecular fatty acids are oxidized to intermediate by-product</p><p> the lack of hydrogen which is consumed by sulfate reducers (Kasali, 1986).</p><p> Qualitatively, land?ll gas is
19、highly dependent on the decomposition stage within the land?ll (Rovers and Farquhar, 1973; Rees, 1980; Pohland et al., 1983; Barlaz et al.,1989c). Under a stabilized methanogenic condition which is the stage of interest
20、from a bene?cial recovery perspective, methane and carbon dioxide are by far the two principal components of land?ll gas and form more than 90% of the total gas generated.Nitrogen and oxygen are normally present in small
21、 quantities primarily as a res</p><p> 3. Leachate Formation Mechanisms</p><p> Leachate formation is the result of the removal of soluble compounds by the non-uniform and intermittent percola
22、tion of water through the refuse mass. Soluble compounds aregenerally encountered in the refuse at emplacement or are formed in chemical and biological processes. The sources of percolating water are primarily the precip
23、itation,irrigation, and run o? which cause in?ltration through the land?ll cover; ground water intrusion, and to a lesser extent, the initial refusemoisture content.Ref</p><p> The quality of land?ll leacha
24、te is highly dependent upon the stage of fermentation in the land?ll, waste composition, operational procedures, and co-disposal of industrial wastes (Hoeks and Harmsen, 1980; Parker and Williams, 1981; Harmen, 1983; Poh
25、land et al., 1983). Many chemicals (e.g. metals, aliphatics, acyclics, terpenes, and aromatics) have been detected in land?ll leachate from domestic, commercial, industrial, and co-disposal sites. </p><p>
26、4. Environmental Impacts</p><p> Historically, land?lls were initiated largely as a result of a need to protect the environment and society from adverse impacts of alternative methods of refuse disposal suc
27、h as open-air burning, open-pit dumping, and ocean dumping (Senior, 1990). Although land?lls eliminated some impacts of old practices, new ones arose, primarily due to gas and leachate formation. Besides potential health
28、 hazards, these concerns include ?res and explosions, vegetation damage, unpleasant odors, land?ll settleme</p><p> 4.1 Fire and Explosion Hazards? ??? ????????? ?</p><p> Although land?ll gas
29、 rich in methane provides an energy recovery opportunity, it has often been considered to be a liability because of its ?ammability, its ability to form explosive mixtures with air, and its tendency to migrate away from
30、the land?ll boundaries by di?usion and advection. Di?usion is the physical process that causes a gas to seek a uniform concentration throughout the land?ll volume, hence the gas moves from areas of higher to areas of low
31、er concentration. Advection results from</p><p> 4.2.Vegetation Damage????????? ?????????????</p><p> At closure, many land?ll sites are converted to parks, golf courses, agricultural ?elds, a
32、nd in some cases, commercial developments. Vegetation damage at or nearby to such sites is well documented in the literature (Flower et al., 1977, 1981; Leone et al., 1977; Leone and Flower, 1982; Gilman, 1980; Gilman et
33、 al., 1981, 1982, 1985; Arthur et al.,1985). The damage occurs primarily due to oxygen de?ciency in the root zone resulting from a direct displacement of oxygen by land?ll gas. In the absenc</p><p> 4.3. Un
34、pleasants Odors???????? ?????</p><p> Odors are mainly the result of the presence of small concentrations of odorous constituents (esters, hydrogen sul?de, organosulphurs, alkylbenzenes, limonene and other
35、hydrocarbons) in land?ll gas emitted into the atmosphere (Young and Parker,1983, 1984). The odorous nature of land?ll gas may vary widely from relatively sweet to bitter and acrid depending on the concentration of the od
36、orous constituents within the gas. These concentrations will vary with waste composition and age, decomposition </p><p> 4.4 Ground Water Pollution ?????? ????? ?????????</p><p> Leachate occu
37、rrence is by far the most signi?cant threat to ground water. Once it reaches the bottom of the land?ll or an impermeable layer within the land?ll, leachate either travels laterally to a point where it discharges to the g
38、round’s surface as a seep, or it will move through the base of the land?ll and into the subsurface formations. Depending upon the nature of these formations and in the absence of a leachate collection system, leachate ha
39、s reportedly been associated with the contamina</p><p> 4.5. Air Pollution?? ?????????</p><p> Although methane and carbon dioxide are the two major components of the gas emitted from land?lls
40、, there is evidence that this gas contains numerous other constituents in trace amounts signi?cant enough to cause environmental and health concerns(Lytwynyshyn et al., 1982; Young and Parker, 1983; Karimi, 1983; Gianti
41、et al., 1984; Harkov et al., 1985; Todd and Propper, 1985; Young and Heasman, 1985; Wood and Porter, 1986; Rettenberg, 1984, 1987). Potential emissions of Volatile Organic Compounds (</p><p> /day (US EPA,
42、1989).</p><p> 4.6 Global Warming. ?????? ???????</p><p> Atmospheric gas emission rates through a land?ll cover have been measured by several investigators. During dry soil conditions at a se
43、mi-arid land?ll site, Bogner et al. (1989) indicated that methane and carbon dioxide ?uxes may be as high as 630 and 950 kg/ m2/yr, respectively. Using ?ux box measurements, Lytwynyshyn et al. (1982) and Kunz and Lu (197
44、9, 1980), estimated that methane di?usion ?ux through land?ll covers ranged between 390 and 1200 kg/m2/yr. These measurements are likely to undere</p><p> 5. Land?ll gas and leachate control</p><
45、p> Land?ll gas control measures are essential in order to eliminate or minimize its associated adverse environmental impacts. In most cases the installation of a gas recovery, collection and treatment system will ass
46、ist in preventing gas migration away from the land?ll boundaries or gas emissions through the land?ll surface. Indeed many of the early gas recovery projects were developed as a consequence of, or as an adjunct to, exist
47、ing gas migration control schemes. When land?ll gas is recovered ap</p><p> The economic feasibility of land?ll gas recovery, processing, and utilization have indeed been demonstrated and reported by many i
48、nvestigators at sites under di?erent climatic conditions (Boyle, 1976; Lockman, 1979; Kaszynski et al., 1981; EMCON, 1983; Mouton, 1984; Wiqwist, 1986; Gendebien et al., 1992). New land?lls can be designed to prevent lan
49、d?ll gas accumulation even if no productive use of the gas is planned. Land?ll gas control systems have been well documented in engineering practice (</p><p> (1) the installation of impermeable barriers be
50、fore site operations to secure the perimeter of the land?ll (cement walls, clay trenches, impervious liner materials such as plastics, rubber, asphalt, polyvinyl chloride, high density polyethylene, etc.); </p>&l
51、t;p> (2) passive venting</p><p> consisting of a trench installed beyond the land?ll boundary and back?lled with coarse material (e.g. gravel) to create a zone of high permeability which would be prefer
52、entially used by the gas; (3) a hybrid system consisting of any combination of impermeable barriers and an active or passive system (Alzaydi, 1980). Injection of lime slurry and ?y ash has also been reported to control m
53、ethane formation and stabilize land?lls by inhibiting methanogenesis and stopping land?ll gas generation (Kinma</p><p> Leachate composition can be controlled to a limited extent by close monitoring and sor
54、ting of land?ll waste. However, decomposition byproducts dissolved in in?ltrating water will result in a leachate with elevated concentrations of numerous hazardous chemicals. Leachate treatment is often necessary to red
55、uce these concentrations to levels that meet regulatory requirements. Most biological, physical and chemical processes used for the treatment of industrial wastewater have been tested for treatm</p><p> 6.
56、Summary and conclusions</p><p> Gas and leachate generation are inevitable consequences of the practice of waste disposal in land?lls.Microbial decomposition, climatic conditions, refuse characteristics and
57、 land?lling operations are amongst the many factors contributing the gas and leachate generation at land?ll sites. The migration of gas and leachate away from the land?ll boundaries and their release into the surrounding
58、 environment present serious environmental concerns at both existing and new facilities including potentia</p><p> 7.References</p><p> Abriola, L. and Pinder, G. F. (1985). A multiphase appro
59、ach to the modeling of porous media contamination by organic compounds, 1. equation development; 2. numerical simulation. Water Resources Research, 21,1–26.</p><p> Adamse, A. D., Hoeks, J., DeBont, J. A.
60、 M. and Kessel, J. F. (1972). Microbial activities in soil near natural gas leaks. Archiv fur Microbiologie, 83, 32–51.</p><p> Albaiges, J., Casado, F. and Ventura, F. (1986). Organic indicators of groundw
61、ater pollution by a sanitary land?ll. Water Research, 20, 1153–1159.</p><p> Alexnder, M. (1971). Microbial ecology. New York: John Wiley & Sons, Inc. Alzaydi,A. A. (1980). Land?ll gasmigration and cont
62、rol systems. Its applications and limitations. In Life Cycle</p><p> Problems in Environmental Technology, Proceedings of the 26th Annual Technical Meeting, Philadelphia, Pennsylvania, 337–341.</p>&
63、lt;p> Alpern, R. (1973). Decomposition rates of garbage in existing Los Angeles land?lls. M.S. Thesis, California State University, Long Beach, California.</p><p> Anderson, D. R. and Callinan, J. P. (1
64、970). Gas generation and movement in land?lls. In Industrial Solid</p><p> Wastes Management, Proceedings of the National Conference, Houston, Texas, 311–316.</p><p> Archer, D. B. and Roberts
65、on, J. A. (1986). The fundamentals of land?ll microbiology. In Energy from Land?ll Gas, (J. R. Emberton and R. F. Emberton, eds), Solihull, U.K., pp. 116–122.</p><p> Arigala, S. G., Tsotsis, T. T., Webster
66、, I. A., Yortsos, Y. C. and Kattapuram, J. J. (1995). Gas generation, transport, and extraction in land?lls. Journal of Environmental Engineering, 121, 33–44.</p><p> Arthur, J. J., Leone, I. A. and Flower,
67、 F. B. (1985). The response of tomato plants to simulated land?ll gas mixtures. Journal of Environmental Science and Health, 20, 913–925.</p><p> Augenstein, D. C., Cooney, C. L., Wise, D. L. and Wentworth,
68、 R. L. (1976). Fuel gas recovery from controlled land?lling of municipal wastes. Resources Recovery and Conservation, 2, 103–107.</p><p> Augenstein, D. C. (1990). Greenhouse e?ect contributions of US land?
69、ll methane. In Land?ll Gas: Energyand Environment, (Richards, G. E. and Alston, Y. R., eds), pp. 615–645.</p><p> Baehr, A. L. (1987). Selective transport of hydrocarbons in the unsaturated zone due to aque
70、ous and vapor phase partitioning. Water Resources Research, 23, 1926–1938.</p><p> 固體廢物填埋對(duì)環(huán)境的影響</p><p> 摘要:由于氣象條件的差異、填埋垃圾的特性、填埋場(chǎng)類型的不同,固體廢物填埋處置中由微生物分解而產(chǎn)生的氣體和滲濾液對(duì)環(huán)境產(chǎn)生了很大的影響。目前,填埋氣體的遷移和滲濾液向填埋場(chǎng)邊界外
71、滲以及它們對(duì)周圍環(huán)境的排放產(chǎn)生了嚴(yán)重的環(huán)境問題。除了包括一些潛在的健康危害外,這些問題還可能引發(fā)包括:火災(zāi),爆炸,破壞植被,臭氣,垃圾填埋場(chǎng)不均勻沉降,地下水污染,空氣污染和全球變暖等問題。本文對(duì)填埋氣體,堆填區(qū)滲濾液的形成機(jī)理和對(duì)環(huán)境造成不良影響做了概述,并介紹了消除或減少這些影響的方法。</p><p> 關(guān)鍵詞:垃圾填埋場(chǎng); 固體廢物處理; 生物降解; 氣體和滲濾液的產(chǎn)生; 對(duì)環(huán)境的影響; 控制方法<
72、;/p><p><b> 1.引言</b></p><p> 在絕大多數(shù)情況下,垃圾填埋仍是最經(jīng)濟(jì)的固體廢物處置方式。因此,堆填將繼續(xù)成為最具吸引力的固體廢物處置的路線。事實(shí)上,根據(jù)相關(guān)資料,當(dāng)今世界上有 95%的固體廢物產(chǎn)生是通過填埋,這種方法處置的垃圾填埋被稱為是減量化工藝,因?yàn)樗鼈儺a(chǎn)生的廢物組分(比如燃燒過程產(chǎn)生的飛灰能產(chǎn)生二次污染),其最終必須進(jìn)行填埋。填埋不
73、僅僅局限對(duì)城市生活固體廢物的處置,同時(shí)也包括大多數(shù)其他工業(yè)垃圾固體廢棄物。例如,近80在美國產(chǎn)生的危險(xiǎn)廢物都是填埋處置的。固體廢物的成分與社會(huì)經(jīng)濟(jì)條件,地域等條件有關(guān),差異極大。</p><p> 多數(shù)有機(jī)材料可生物降解,能在好氧和厭氧微生物的作用下降解為簡(jiǎn)單化合物,這就產(chǎn)生氣體和滲濾液的形成。以下各節(jié)概述了氣體和滲濾液在填埋場(chǎng)的形成機(jī)制,對(duì)環(huán)境的影響,以及適當(dāng)?shù)目刂品椒?,以消除或減少這些影響。</p&g
74、t;<p> 2.填埋氣體的形成機(jī)理</p><p> 在填埋廢物分解的過程中,產(chǎn)生氧氣,導(dǎo)致可降解有機(jī)物迅速與氧氣發(fā)生反應(yīng),形成形成二氧化碳,水和其他的產(chǎn)物。二氧化碳的產(chǎn)生近似等同于消耗氧氣。在氧氣耗盡就標(biāo)志著填埋場(chǎng)厭氧分解來的階段的開始。雖然經(jīng)歷了一個(gè)垃圾填埋場(chǎng)生態(tài)系統(tǒng)短期好氧分解的初步階段,隨后的厭氧階段在持續(xù)的時(shí)間和氣體形成的角度看是主要的反應(yīng)階段。</p><p&g
75、t; 大部分已知的或假定的有關(guān)堆填區(qū)的厭氧過程中主要的是厭氧消化。在兩種環(huán)境中微生物種群似乎是類似,主要區(qū)別在于,他們可能會(huì)有不同組分的脂肪,蛋白質(zhì)的相對(duì)含量,碳水化合物,并反過來作用于填埋垃圾,在厭氧消化環(huán)境中可以很好控制,而且往往是最佳條件。</p><p> 研究人員在有機(jī)材料轉(zhuǎn)換為甲烷和二氧化碳的過程中已經(jīng)發(fā)現(xiàn)了很多重大步驟來描述厭氧的階段,這些步驟是高度相互依存的,包括水解,酸化,酸形成期和甲烷形成
76、期。</p><p> 一般而言,有機(jī)質(zhì)在厭氧生態(tài)系統(tǒng)的分解按順序從復(fù)雜到稍微復(fù)雜的顆粒物質(zhì)水解開始到更復(fù)雜的高分子蛋白質(zhì),碳水化合物和脂肪,進(jìn)一步水解產(chǎn)生如氨基酸,糖,高分子脂肪酸。氨基酸和糖轉(zhuǎn)換成副產(chǎn)品如丙酸,丁酸等揮發(fā)性酸(丙酸,丁酸等揮發(fā)性酸)或直接發(fā)酵形成醋酸。高分子脂肪酸氧化為中間副產(chǎn)品和氫氣。醋酸分解形成甲烷和二氧化碳。甲烷也是經(jīng)碳和氫反應(yīng)形成的。在垃圾填埋環(huán)境下,從后者往往是受到限制的。因?yàn)槿鄙?/p>
77、酸產(chǎn)生時(shí)期的還原劑氫。同樣,填埋氣體于堆填區(qū)分解階段有很大的關(guān)系。從有利于復(fù)蘇的角度來看,在一個(gè)穩(wěn)定的產(chǎn)甲烷條件是最理想的階段,甲烷和二氧化碳是目前的兩個(gè)垃圾填埋氣體的主要成分,占總填埋氣體的90%,氮?dú)夂脱鯕?,產(chǎn)生量很少,目前主要是因?yàn)樵诳諝庵谐练e廢物誘捕,通過填埋場(chǎng)大氣擴(kuò)散,特別是在近表面層,或在空氣負(fù)填埋垃圾填埋氣體的壓力入侵時(shí)被提取。</p><p><b> 3.滲濾液形成機(jī)制</b&
78、gt;</p><p> 滲濾液形成是可溶性物質(zhì)在垃圾中以水的形式不均勻和間歇滲透的結(jié)果。水溶性化合物在安置過程中或者在化學(xué)和生物過程中遇到的垃圾。滲濾水的來源主要是降水,灌溉,地表徑流,地下水入侵,還有很少一部分垃圾分解而形成的水分。由于微生物的活動(dòng)也可能有助于滲濾液形成,但是量很少。滲濾液產(chǎn)生量的決定因素有地形特點(diǎn)、地下水、氣象條件、垃圾的特點(diǎn)、垃圾填埋場(chǎng)表面和底層土壤。 </p><p
79、> 垃圾填埋場(chǎng)滲濾液的質(zhì)量是與垃圾填埋發(fā)酵階段、垃圾組份、填埋類型、工業(yè)固體廢物的處置方式等密切相關(guān)的。已被發(fā)現(xiàn)在垃圾滲濾液中有許多來源于住宅、商業(yè)、工業(yè)和共同處置場(chǎng)所的化學(xué)物質(zhì)(如金屬,脂肪族化合物,烯烴和芳烴)。</p><p><b> 4.環(huán)境影響</b></p><p> 從歷史上看,垃圾填埋的實(shí)施,主要是為了保護(hù)環(huán)境和社會(huì),減輕其他垃圾處理方法
80、的不利影響,例如露天焚燒,露天傾倒和海洋傾倒。雖然堆填法消除了一些舊的影響,但新的問題隨之出現(xiàn)了,主要是填埋氣體和滲濾液的形成。除了潛在的健康危害,這些問題包括火災(zāi)、爆炸、植被破壞、臭氣、垃圾填埋場(chǎng)沉降、地下水污染、空氣污染和全球變暖等。</p><p> 4.1 火災(zāi)和爆炸危險(xiǎn)</p><p> 雖然垃圾填埋氣甲烷回收是能源恢復(fù)的一個(gè)機(jī)會(huì),它往往被認(rèn)為是不利的,由于其易燃性,它能與空
81、氣形成爆炸性混合物,其有水平和垂直遷移的傾向而擴(kuò)散到堆填區(qū)邊界以外。擴(kuò)散是物理過程,是氣體從高濃度向低濃度擴(kuò)散,使填埋氣在整個(gè)整個(gè)填埋區(qū)內(nèi)的濃度相同。從壓力對(duì)流講,從高壓力區(qū)向低壓區(qū)遷移。擴(kuò)散和對(duì)流率主要取決于物理性質(zhì)和填埋氣體形成量、垃圾滲透率、內(nèi)部堆填區(qū)溫度、周圍土壤含水量和大氣壓力的變化。</p><p><b> 4.2植被破壞?</b></p><p>
82、 在封場(chǎng)以后,許多垃圾填埋場(chǎng)被作為公園、高爾夫球場(chǎng)、農(nóng)業(yè)等用地,以及在某些情況下,變成商業(yè)中心。植被或附近的這些遺跡受到破壞是有據(jù)可查的。損害發(fā)生主要是由于填埋氣體對(duì)植物根部氧氣的直接替換而導(dǎo)致的缺氧。在填埋氣治理措施不完善的情況下,填埋氣體可向上遷移,穿過填埋場(chǎng)覆蓋層,由于濃度梯度和壓力梯度,逃逸到大氣中。在這個(gè)過程中,氧散失,植物根系接觸到垃圾填埋氣體主要成分是高濃度甲烷和二氧化碳,由于缺氧會(huì)導(dǎo)致植物窒息死亡。</p>
83、<p> 4.3臭氣味?????????????</p><p> 氣味,主要是將(在垃圾填埋氣體的酯,硫化氫,有機(jī)物,烷基苯,檸檬烯</p><p> 和其他碳?xì)浠衔?,)排放到空氣。?duì)垃圾填埋氣體的性質(zhì)應(yīng)該是不同氣味或苦或甜或酸取決于內(nèi)部的氣味成分的濃度。這些廢物的濃度將隨組成和年齡、分解階段、氣體產(chǎn)生率、以及微生物種群內(nèi)的廢物的性質(zhì),或者其他因素而不同。雖然許多有氣
84、味的化合物可能是有毒的微量元素,它們?cè)跉v史上一直被更多的認(rèn)為間接的,而不是一個(gè)直接的健康危害。在何種程度上遷移到堆填區(qū)邊界以外,主要取決于天氣條件(風(fēng),溫度,壓力,濕度)。</p><p> 4.4地下水污染????????????????????</p><p> 滲濾液是迄今為止對(duì)地下水威脅最嚴(yán)重因素。一旦達(dá)到在堆填區(qū)底部或不透水層,滲濾液就要導(dǎo)排到指定的地方,否則會(huì)透過填埋地基,
85、進(jìn)入地下。這取決于材料的性質(zhì),滲濾液收集系統(tǒng)的有無,過去40年的廣泛調(diào)查的結(jié)果發(fā)現(xiàn),滲濾液與堆填區(qū)底部的含水層接觸,會(huì)導(dǎo)致含水層的污染。事實(shí)上,據(jù)推測(cè),在美國,每年,對(duì)受污染的地下水,每家每戶對(duì)堆填區(qū)的市政貢獻(xiàn)都要超過1加侖。</p><p> 4.5.空氣污染???????????</p><p> 雖然甲烷和二氧化碳,是兩種來自堆填區(qū)排放的主要?dú)怏w,有證據(jù)表明,這種氣體含有微量的其
86、它組分,達(dá)到一定程度足以造成環(huán)境和健康問題。垃圾填埋場(chǎng)排放的揮發(fā)性有機(jī)化合物(VOCs)排放量的潛在范圍可以從4 × 10-4至1 × 10-3 kg/m2/天。</p><p> 4.6全球變暖。 ?????????????通過對(duì)封場(chǎng)了的垃圾填埋場(chǎng)的氣體排放率的若干調(diào)查。在一個(gè)半干旱填埋場(chǎng)</p><p> 干燥的土壤條件,使用通量箱測(cè)量,Bogner 指出,甲
87、烷和二氧化碳通量可高達(dá)630和950公斤高/ m2/yr。據(jù)估計(jì),通過垃圾填埋場(chǎng)的甲烷擴(kuò)散通量涵蓋介于390和1200 kg/m2/年。這些測(cè)量可能偏低,由于靠近表面的甲烷氧化菌氧化甲烷產(chǎn)生氧。雖然從控制實(shí)驗(yàn)的排放率不是從垃圾填埋場(chǎng)實(shí)際排放量的代表,但是它們清楚地表明了氣體釋放到大氣中的傾向。</p><p> 5.垃圾填埋氣體和滲濾液控制</p><p> 為了消除或盡量減少其對(duì)環(huán)境
88、的不利影響,垃圾填埋氣體的控制措施是必不可少的。在大多數(shù)情況下,氣體的回收利用,收集和處理系統(tǒng)將有助于防止填埋氣運(yùn)移遠(yuǎn)離邊界和填埋氣體通過表面排放。事實(shí)上,早期的填埋氣回收項(xiàng)目有不少是發(fā)展成為一個(gè)舉足輕重的,或作為現(xiàn)有油氣運(yùn)移控制計(jì)劃的輔助手段。填埋氣體回收適當(dāng)?shù)募淄楹?,是?duì)潛力巨大的能源。據(jù)估計(jì),每年僅在美國天然氣發(fā)電潛力超過六十億立方米。在美國,該氣體為代表的能源能夠滿足能源需求總數(shù)的1%的或5%的天然氣利用。全球每年的天然氣發(fā)電
89、潛力估計(jì)是很大的,30至4300千萬立方米,但在與有回收系統(tǒng)的實(shí)際填埋場(chǎng)的甲烷產(chǎn)量數(shù)據(jù)進(jìn)行了對(duì)比后上限是有質(zhì)疑的。</p><p> 有很多調(diào)查員在不同氣候條件下對(duì)填埋氣體回收,處理經(jīng)濟(jì)上的可行性,利用確實(shí)證劇并報(bào)告結(jié)果。即使沒有使用的填埋氣生產(chǎn)計(jì)劃的條件下也可以設(shè)計(jì)新的堆填區(qū),以防止垃圾填埋氣體的積累。填埋氣體控制系統(tǒng)已在工程中得到很好實(shí)踐。除了填埋氣體回收和活性氣體泵,控制措施包括:</p>
90、<p> ?。?)在填埋之前,對(duì)場(chǎng)地進(jìn)行防滲處理。(水泥墻,粘土壕溝,如塑料,橡膠,瀝青,聚氯乙烯,高密度聚乙烯等防滲襯墊材料); </p><p><b> ?。?)被動(dòng)式排氣</b></p><p> 在填埋場(chǎng)邊界設(shè)置一個(gè)盲溝,在背部用粗料如礫石(回填)創(chuàng)建一個(gè)將被氣體優(yōu)先使用的高滲透率區(qū)域。</p><p> (3)混合動(dòng)力
91、系統(tǒng)是幾個(gè)防滲相結(jié)合組成的一個(gè)活躍或被動(dòng)系統(tǒng)(Alzaydi,1980)。調(diào)查發(fā)現(xiàn)醫(yī)院垃圾和飛灰,控制甲烷形成和穩(wěn)定,抑制產(chǎn)甲烷堆填區(qū)填埋氣體。</p><p> 通過在有限范圍內(nèi)密切監(jiān)測(cè)和分析填埋垃圾可以控制滲瀝液的組成。然而,分解的副產(chǎn)品溶解于滲透水將可能與眾多的危險(xiǎn)化學(xué)品結(jié)合,最后導(dǎo)致滲濾液的濃度升高。滲濾液處理通常需要減少濃度水平達(dá)到規(guī)定的監(jiān)管標(biāo)準(zhǔn)。用于工業(yè)垃圾滲濾液處理的方法常用的有生物,物理和化學(xué)法
92、。特定處理工藝選擇將取決于滲濾液質(zhì)量和數(shù)量。</p><p><b> 6.結(jié)論</b></p><p> 氣體和滲濾污水的產(chǎn)生是廢物處理方法不可避免的后果。填埋場(chǎng)微生物的分解,氣候條件,垃圾特性和垃圾填埋作業(yè)當(dāng)中的許多因素造成氣體和垃圾填埋場(chǎng)滲濾液的產(chǎn)生。填埋氣體的遷移和滲濾污水向堆填區(qū)邊界的外移和以及對(duì)周圍環(huán)境釋放是目前新的嚴(yán)重環(huán)境問題,包括潛在的健康危害,火
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯----固體廢物填埋對(duì)環(huán)境的影響(節(jié)選)
- 外文翻譯----固體廢物填埋對(duì)環(huán)境的影響(節(jié)選)
- 外文翻譯----固體廢物填埋對(duì)環(huán)境的影響.doc
- 外文翻譯----固體廢物填埋對(duì)環(huán)境的影響.doc
- 固體廢物的填埋處置
- 一般固體廢物填埋及環(huán)境保護(hù)
- 工業(yè)固體廢物填埋處理處置建設(shè)項(xiàng)目環(huán)境影響報(bào)告書
- 13固體廢物的填埋處理201512環(huán)科學(xué)生版
- 固體廢物翻譯
- 工業(yè)固體廢物填埋處置設(shè)施的建設(shè)與管理研究.pdf
- 返回衛(wèi)生填埋法這是醫(yī)療固體廢物的最終處置方法
- 固體廢物與環(huán)境
- 第九章-固體廢物的處置方法衛(wèi)生土地填埋
- 工程固體廢物環(huán)境影響評(píng)價(jià)研究.pdf
- zj固體廢物
- 固體廢物處理
- 固體廢物污染
- 固體廢物鑒別
- 固體廢物處理
- 固體廢物的焚燒
評(píng)論
0/150
提交評(píng)論