版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 免耕播種機的新型雙翼型開溝器對玉米種區(qū)土壤物理特性和根系固定的影響:和雙圓盤開溝器相比較</p><p><b> 摘要</b></p><p> 使用這種新型雙翼型開溝器的免耕播種機可以改善各種土壤的物理特性以及土壤的氣候條件,因此,間接的影響了作物的幼苗出土和早期生長。</p><p> 播種機的技術(shù)改進是在作物
2、耕作過程中進行的,并且近年來改進的步伐逐漸加大,但是一些新技術(shù)的革新仍需進行單獨的試驗。在意大利的實驗田里,通過2002——2003年對四塊不同土壤的試驗田的評估得出:和被廣泛使用的雙圓盤開溝器相比較,新型雙翼型開溝器影響了玉米種區(qū)土壤物理特性和根系的固定。 </p><p> 對于雙圓盤開溝器和雙翼型開溝器,它們導(dǎo)致更了高的土壤殘留物,使土壤覆蓋指數(shù)在不過量情況下明顯下降,各自下降-27%和-6%。雙翼型開溝
3、器使種區(qū)上層5厘米處的土壤容重和土壤滲透阻力變得更低,然而在玉米生長到3個葉的時候并沒有發(fā)現(xiàn)更大的根系密度,這可能是由于雙翼型開溝器旁鏟播種深度的不平導(dǎo)致的。在某些情況下,幼苗出土延期可能也與雙翼型開溝器有關(guān),它使種子和土壤的接觸深度增加。</p><p> 關(guān)鍵詞:玉米;免耕;開溝器類型;根系生長;種區(qū)物理特性;</p><p> 縮寫:CI:覆蓋指數(shù) DAS:播種幾天后 D
4、DO:雙圓盤開溝器 FRSD:種溝平度標準偏差 PR:滲透阻力 RLD:根系容積密度 SOC:土壤有機碳 WSO:雙翼型開溝器</p><p><b> 1.引言</b></p><p> 在過去幾年內(nèi),由于傳統(tǒng)的耕作經(jīng)濟和環(huán)境的影響,譬如侵蝕,擊實和倒置土壤層數(shù),導(dǎo)致意大利不得不重新考慮免耕播種。尤其在土壤難耕的意大利,深層犁田旨在增加土壤孔
5、隙,至少暫時能為種子發(fā)芽、根系生長創(chuàng)造適當?shù)臈l件。雜草的簡單化管理和夏季的谷物更高出產(chǎn)量都與免耕播種有關(guān),少數(shù)有用的數(shù)據(jù)被意大利作為文獻資料的證據(jù)。</p><p> 免耕播種機的性能取決于與實地情況有關(guān)的幾個因素,包括類型和土壤表面相當數(shù)量的殘留物、開溝器的設(shè)計(Morrison 2002)、被播種作物等。使用這些播種機的必須有很高的靈活性,以便各種各樣的莊稼可能被用正確的方法播種在不同條件的區(qū)域內(nèi)。在免耕播
6、種的實踐中,種子溝的特征起了重要的作用,許多專家都指出,最重要的因素是調(diào)節(jié)發(fā)芽,如土壤基質(zhì)潛力氣溫(1976年,施耐德)、播種深度(阿萊西、1971馬赫迪等.1998年)等受土壤/開溝器接觸的影響。特別是,為了保持固定的播種深度,在過去幾十年期間,人們提出拉應(yīng)力各種各樣的類型拉桿來聯(lián)結(jié)在開溝器和播種機具的建議。例如,結(jié)合春天的播種體制,最古老而簡單的解決方法是不用總要保證播種深度一致,尤其是泥濘的土地里。以平行拉桿來聯(lián)結(jié)開溝器和播種機具
7、是使上述要求得到巨大改善, 因為它允許開溝器準確地跟隨土壤表面外形前行。</p><p> 許多免耕播種的種子區(qū)域的特征取決于類播種機上開溝器的類型和兩種類型的中耕鏟和圓盤鏟的不同,中耕鏟開溝器對土壤的破碎效果和減震器在土壤表面的效果大致相同--尤其是具有明顯的不對稱形狀工具,若播種后雨水較少,土壤干燥將會加速。在相似的情況,圓盤開溝器造成的在種子層之上的水分流失比中耕開溝器更為嚴重,雖然在濕粘土溝這種弊端很明
8、顯.</p><p> 人們普遍認識到,對作物殘留(前作物)的管理是世界上最重要的制約免耕播種的素,(卡特,1994年).中耕開溝器可以將有機廢棄物從作物一邊移到土壤表面,那樣可能堵塞播種機,但是圓盤開溝器也許會導(dǎo)致"hairpinning",由此破壞不好的土壤/可能和有毒的種子產(chǎn)生種苗效應(yīng)(hultgreen,2000).殘渣在播種時產(chǎn)生很多問題,但它們的存在對土壤表面的些負面效應(yīng)有限制作
9、用象侵蝕和水土流失等.</p><p> 關(guān)于土壤和氣侯條件,開溝器應(yīng)達到這樣幾個目標,象播種均勻、隔和深度- 適當?shù)牟シN數(shù)量以保證土壤/種子的良好接觸,減少水分流失,避免種子和肥料或廢棄物接觸和土壤壓實,所有這些可能將阻礙作物根系生長。中耕開溝器對作物的幼苗出土和根系固定的影響尤其明顯,特別是在地殼形成的土壤里,但這要比使用雙圓盤開溝器的效果好的多。</p><p> 免耕技術(shù)的改善
10、是直接在作物耕地里實施的,并且逐步在各個行業(yè)里實現(xiàn),但仍有大量的改進要進行單獨的測試和仔細的評估。此外,很多這方面的資料指向開溝器/土壤的相互作用,而不分析作物生長的影響。和土壤條件和技術(shù)參數(shù)對溝型及性質(zhì)的影響要我們廣泛的學(xué)習(xí)不同類型的開溝器,如深度和播種速度。然而,只有少數(shù)研究針對作物參數(shù),他們普遍對秋季谷物播種的研究,例如,喬德里和貝克(1988)發(fā)現(xiàn)各種不同類型的開溝器導(dǎo)致大麥幼苗生長情況不同,即當大麥芽和根系重量因使用(T形槽)
11、或鋤頭(U型槽)和以前的開溝器不同而不同。</p><p> 在這種思想框架內(nèi),這個研究的創(chuàng)新性評價表現(xiàn)在寬箭型開溝器由一個雙掛鉤機構(gòu)連接在機架上,它對播種區(qū)域的土壤特性,作物幼苗出土和根系的早期生長起作用,這在意大利是很普遍的。</p><p><b> 2. 材料和方法</b></p><p> 2.1. 設(shè)備描述 </p>
12、;<p> 圓盤開溝器相比較,氣動播種機上一種良好性能的新型寬箭型開溝器已經(jīng)試制成功,并被馬克思第2代免耕播種機所使用。如圖1所示。</p><p> 圖1 (a) 前鑿刀; (b) 旁鏟刀 (c) 端鏟刀; (d) 多行分種器; (e)平行連接支架.</p><p> 雙翼型開溝器有一個豎直的軸線,前面有鑿刀,后面有兩個寬18厘米的鏟,前面的在工作方向有輕微的角度,
13、端鏟垂直(90度)向上,高25毫米。前鏟削去的土壤比后面的鏟刀深25-30毫米,種子通過一個氣動管道從中央容器運送給每一個播種機構(gòu),(讓播種機承擔一定的種子),雖然各種行距能夠確定,在我們的試驗田里-作為第一個樣本機實驗的開溝器-玉米的行距為0.45米,這是實驗常用的行距。</p><p> 雙翼型開溝器有一個剛性機架和一個可折疊的機構(gòu),剛性機架支撐前支架是播種機與拖拉機連接,后面兩個低壓輪子作為運輸,折疊機構(gòu)
14、旨在盡可能的確保開溝器沿土壤斷面行走。因為這個原因,它有3個部分組成,每部分1.5米寬,用彈性關(guān)節(jié)和剛性機架相連接,每個關(guān)節(jié)有5個開溝器,共15個排種器,它們用3個和平行連桿連動以確保它的穩(wěn)定性,另外每個關(guān)節(jié)有前輪和后輪壓緊。后者是工作時的重要組成部分,在這種播種機上,每節(jié)10個輪子,有3-8個輪胎和0.9磅的壓力。</p><p> 圖2 使用雙翼型開溝器的免耕播種機 (上) 和使用雙圓盤開溝器
15、的免耕播種機(下)</p><p> 使用雙圓盤開溝器的播種機配備有8組免耕設(shè)備,使用氣動輸種,播種間距0.75米,工作寬度6米,這里使用的雙圓盤開溝器有一個槽,圓刃鏟刀,雙圓盤組成,并與兩個輥和后面的V型掄聯(lián)結(jié),</p><p> 開溝器要求將不同播種機的差異降到最小,雖然這并不完全可行,特別是當開溝器的設(shè)計很大不同時,盡管如此,以下這些參數(shù),結(jié)果只集中區(qū)的種子工作,主要是受、輪子等
16、機械部件的限制而非其他機械零件。</p><p><b> 2.2 實地實驗</b></p><p> 在意大利等4個初始條件不同領(lǐng)域的(表1)私人農(nóng)場進行為期2年(2002-2003 55'n45°13°10'e,晚間8時)的測試。開溝器的作用影響了種子區(qū)些土壤物理性質(zhì),表層土壤的形態(tài)和作物幼苗的出土及根系的早期生長。如表
17、1所示。</p><p> 表1:在2 年的試驗四個領(lǐng)域的最初的情況和土壤特征在(NE 意大利).</p><p> 在2002年,黏質(zhì)試驗田A和實驗田B含有不同數(shù)量的有機碳,分別為:1.45%和2.27%;在2003年,兩塊不同土壤結(jié)構(gòu)的試驗田,一塊為沙質(zhì)土壤(試驗田C)和一塊沙質(zhì)覆蓋的黏質(zhì)土壤(試驗田D),它們的有機碳的值比2002年更接近。根據(jù)FAO的分類標準,所有土地按真空量分
18、類。</p><p> 觀測2002年4月26日和2003年4月15日種植并使用除草劑的玉米,雙翼型開溝器和雙圓盤開溝器的種植密度分別為8.2每平方米和7.7每平方米。調(diào)整不同播種機調(diào)整機構(gòu),可以將開溝器的種子密度降到最小,在一般情況下,至少在這項研究中,開溝器間的不同種植間距并不影響研究參數(shù)。</p><p> 在本地的測試中,1961—1990年間的年平均降雨量為1200mm比4月
19、份和8月份下降了680mm(57%),年平均氣溫為12.9攝氏度,8月份最高氣溫為24攝氏度,11月份最低氣溫為1.5攝氏度。在2003年的作物循環(huán)周期,(4月—到8月)平均氣溫較2002年高,和過去三十年相比降雨量低,而在2002年,情況恰恰相反,事實上2002年的降雨量為1410mm,在作物生長期下降了(46%)650mm。2003年的降雨量為966mm,在作物生長期下降了(37%)362mm。3氣溫和降雨量一類的數(shù)據(jù),由本地部門和
20、環(huán)境保護協(xié)會提供。</p><p> 對土壤物理性能和根系密度的觀測實驗實在玉米播種后25天且沒有降雨的情況下進行的,這些數(shù)據(jù)由播種機的測量孔測得,和播種機構(gòu)相比土壤參數(shù)受開溝器和鎮(zhèn)壓輪的影響。</p><p><b> 2.3 播種深度</b></p><p> 在2002和2003年,分別出現(xiàn)向前四和二排放置的五個播種排,每排一個苗木
21、。因此,總數(shù)為20和10個植物,這些能完全地從土壤中生長出來嗎?允許無葉綠素的長度量過。當深度的系數(shù)變化,也就是,尺寸被認為是種子沉淀的深度,那么播種深度是有計劃的,在標準的偏離和理論上的深度之間的比是3,但在地勢比較高的地方這個參數(shù)的數(shù)值時能降低的。</p><p><b> 2.4 幼苗出土</b></p><p> 幼苗出芽率的計算是看在播種后的一段不同的時
22、間內(nèi)在一個3平方米的區(qū)域內(nèi)5行種子的發(fā)芽率(2002年和2003年分別重復(fù)5-8次),2002年的計算是在播種后的8、10、12、14、21、和25天內(nèi)進行計算的,2003年的計算是在播種后6、8、14、19和25天內(nèi)進行的。幼苗出芽率的百分比用來確定種子的最終出芽率,The Gompertz得出的時間和發(fā)芽率的方程式如下:</p><p> 回歸系數(shù)C、B、M和它們確定的曲線被列在表2。圖中表明系數(shù)最大值Y(
23、三)和時間X等于30米時的值(二)。</p><p> 表2. 回歸系數(shù)(±S.D.)描述的治療過程中出現(xiàn)各種情況 </p><p><b> 2.5種床不平</b></p><p> 開溝器對土壤的破碎是通過對播種行的(2年內(nèi)的重復(fù)5次)種床不平度測量得到的。土壤斷面的輪廓用黑色描繪在白色的A4(21厘米*29.7厘米)紙上,
24、長的一邊固定在土壤里由同樣尺寸的鍍鋅金屬支撐,</p><p> 根據(jù)桑德拉的解釋(1998年),土壤的覆蓋指數(shù)是根據(jù)種溝平度標準偏差估計的。例如:從薄片底部到黑色最低點的外形在播種作物行間隔20厘米寬的斷面的標準偏差的測量值在0—5厘米。</p><p><b> 2.6覆蓋指數(shù)</b></p><p> 覆蓋指數(shù)(CI),是由數(shù)碼照片
25、檢測到的作物殘留物來確定的,該數(shù)碼照片由奧林巴斯2000攝象機在土壤表面(兩年重復(fù)4次)一點圍繞播種行固定區(qū)域(0.4米×0.4米)內(nèi)拍到的,播種行距可以隨意設(shè)定。也可以在播種之前重復(fù)相同的次數(shù)。對作物殘留值(RI)在的估計被用來區(qū)分播種前后的土壤覆蓋指數(shù)。</p><p> 在把圖像傳送給電腦后, 是一個虛擬的25點珊格被下載到圖象上, 因此能手動計算每一個節(jié)點是否有作物殘留,相交點作物殘留量用來確
26、定土壤覆蓋指數(shù),根據(jù)1988年的資料。</p><p> 2.7 土壤水分和土壤容重</p><p> 在深6厘米直徑8厘米中未被破碎的土核,在烤干至105度且恒重后來確定土壤水分含量和土壤容重.在2003年是在播種6和8天內(nèi)來提取樣本來確定土壤水分和土壤容重。</p><p> 2.8 土壤滲透阻力</p><p> 在兩年內(nèi),用一
27、個平伸的管狀透度針來測試種溝的土壤滲透阻力,測試是在雙圓盤開溝器和雙翼型開溝器形成的種溝一側(cè)每1—5厘米深的斷面內(nèi)重復(fù)測量3次,斷面位置在靠近種行1厘米處,在這兩年內(nèi),三次測量得到的數(shù)據(jù)被作為以后播種的參考(圖3)。</p><p> 圖3 雙翼型開溝器種溝形狀 (上左) 和雙圓盤(上右) 開溝器 和 草圖表示(下).垂直向下的箭頭說明土壤滲透系數(shù)的測量方法</p><p>
28、<b> 3:結(jié)果和討論</b></p><p> 3.1 播種深度和幼苗移植</p><p> 雙翼型開溝器和雙圓盤開溝器在不同條件的土壤中的播種深度幾乎相同,過去平均兩年的播種深度分別為26.5mm和26.4mm,差別并不明顯,除了在干燥的試驗田C中,覆蓋土明顯比雙圓盤開溝器要淺,(17.4mm對26.7mm)。開溝器間的播種深度的標準偏差差別并不明顯,雙翼
29、型開溝器和雙圓盤開溝器分別為0.73mm和0.63mm,因此,深度均值接近,盡管比中耕鏟開溝器和鑿型開溝器的期望值低些。在傳統(tǒng)文獻的報道中,雖然情況如此。但在我們看來,雙翼型開溝器完整的覆土系統(tǒng)的播種深度的深度值是可以精確提高的。</p><p> 關(guān)于幼苗移植,雙翼型開溝器比雙圓盤開溝器的推遲期明顯可見,尤其在2002年,相差一天—試驗田A—0.84天,試驗田B—0.25天,為了觀測50%的幼苗出土情況。(圖
30、4)</p><p> 圖4 玉米發(fā)芽在四塊不同土壤的時間進程</p><p> 當移植延期明顯時,也許部分原因就是由于過低的土壤容重和滲透阻力的下降,通過觀察上面的用雙圓盤開溝器播的種子,都使土壤直接接觸種子。這是對以前作物研究結(jié)果的進一步支持,隨沒有推遲幼苗移植期但卻降低了作物產(chǎn)量和在干旱土壤中播種機的壓力輪得不到利用。</p><p> 3.2土壤形態(tài)學(xué)
31、的影響</p><p> 表層的土壤破碎因開溝器的不同和不同土壤的物理性能不同而有著明顯的差別(表3)。四塊試驗田的中,使用雙翼型開溝器的試驗田的粗糙程度要比使用雙圓盤開溝器的更高些,分別為0.91和0.41,被作為高于種溝平度偏差的證據(jù)。這種結(jié)果在所有的試驗田里明顯可見,它是由于兩種開溝器的不同作業(yè)系統(tǒng)導(dǎo)致的。雙翼型開溝器的前鑿刀和端犁刀更大、更長,破碎和混合土壤的效果要比雙圓盤開溝器好。</p>
32、<p> 表3不同開溝器對不同領(lǐng)域土壤的破碎效果的影響</p><p> 雙圓盤開溝器的土壤斷面呈典型的V型,這種結(jié)果導(dǎo)致的土壤不平在各個試驗田中是很相似的,除試驗田C,試驗田C有較低的種溝不平標準偏差,由于圓盤盤的有限的沖擊使的土壤水分很低(表3)。雖然使用雙翼型開溝器的表面并非完全對稱,表面的高低觀察較為明顯(圖5)。</p><p> 圖5種溝的寬度和高度<
33、/p><p> 然而,我們測量了在土壤坎坷上有些變化用不同的情況,低種溝不平標準偏差降低了土壤水分(試驗田C)(兩種開溝器)和有機碳的高含量(試驗田B)(僅雙翼型開溝器)(表3),主要原因是由于表土聚集體面積的大小。</p><p> 兩個開溝器的不同作業(yè)體制對土壤覆蓋指數(shù)還有些影響(表3),雙圓盤開溝器并沒有改變土壤表面所有作物殘留物的數(shù)量,因此作物殘留物仍然包含在土壤里面,播種前后的土
34、壤覆蓋指數(shù)分別是85%和76%。前排鑿刀導(dǎo)致作物殘留物仍然殘留在土壤中(RI=27%),土壤覆蓋指數(shù)從71%下降到41%,有一種要超出種溝不平度標準偏差的趨勢。</p><p> 3.3 土壤的物理特性和對根系生長的影響</p><p> 不同的開溝器對不同土壤的破碎程度不同,并且希望上層5厘米處為濕度不同的土壤。盡管如此,兩種開溝器在播種前后幾小時內(nèi)的測量值幾乎相同。在2003年,在
35、播種后8天內(nèi)且降雨稀少的情況下,對試驗田C和試驗田D的土壤濕度的檢測并不明顯,盡管不能排除0—5厘米的土壤斷面的差別,這表明作物殘留物可用來保護土壤的水分流失,即使雙翼型開溝器和雙圓盤開溝器的土壤覆蓋指數(shù)比較低。</p><p> 開溝器的類型以不同的方式影響土壤容重,雙翼型開溝器幾乎使所有類型的土壤容重下降,試驗田A下降17%,試驗田B下降20%,試驗田D下降14%。(圖6)在試驗田C中,容重并不確定,F(xiàn)RS
36、D可能和土壤水分和土質(zhì)含量低有關(guān),而雙圓盤開溝器對這種土壤特性的影響較小,是土壤破碎小</p><p><b> 圖6</b></p><p> 一般而言,兩種開溝器都降低了種區(qū)的滲透阻力,但在土壤的類型上有一定的差別。在2002年,兩種試驗田中有機碳的含量不同——即使它們有相同的黏質(zhì)土質(zhì)結(jié)構(gòu),在播種前不僅受土壤指數(shù)的影響而且受開溝器的影響。兩種開溝器導(dǎo)致有機碳的
37、含量明顯不同(試驗田A和試驗田B),例如,播種前滲透阻力和深度有關(guān)(232Kpa,平均0—5厘米),但播種后變化相當明顯,兩種開溝器有明顯的不同,尤其在0—3厘米處(圖7)</p><p> 圖7 兩種開溝器在4塊土壤上層5厘米處的土壤滲透阻力</p><p> 在平均0——5厘米處。使用雙翼型開溝器滲透阻力下降64%;而使用雙圓盤開溝器僅下降23%,并且使容重更低。在試驗
38、田B中,播種前滲透阻力比試驗田A降低了2.6倍,開溝器的影響更低了,尤其是雙圓盤開溝器。在2003年,在試驗田C和試驗田D,和2002年相比,使用雙翼型開溝器明顯降低了滲透阻力(圖)</p><p> 鑒于使用雙圓盤開溝器使土壤斷面的特性曲線和播種前比較僅有一點變化。當滲透阻力的標準值較播種前有很明顯的變化時,使用雙翼型開溝器得到的特性曲線和所有試驗田3厘米初的滲透阻力相比下降明顯,而在2厘米處增加相當明顯,它
39、們的標準值變成>1。(圖8)</p><p> 圖8 使用兩種開溝器的四塊試驗田在播種前的土壤滲透阻力</p><p> 這些情況表明:不同程度的平整性對播種深度的影響由端鏟控制。根據(jù)土壤類型和水分濕度,雙圓盤開溝器對滲透阻力的影響較標準值更不明顯,有一種隨深度增加其值降低的趨勢。</p><p> 圖9使用兩種開溝器的四塊試驗田的根系土壤容重<
40、/p><p> 盡管雙翼型開溝器使土壤滲透阻力在前3厘米內(nèi)下降,在幾乎所有的試驗田根系生長的長度和深度沒有明顯增長的信息被透露,這兩種根系特征明顯和兩種確定的高度系數(shù)有關(guān)(2002年:R^2=0.87,在2003年:R^2=0.71)。出乎意料,在使用雙圓盤開溝器的試驗田A低于根系容積系數(shù)的值在頂層5厘米處被發(fā)現(xiàn)。(圖9)也許因為平整度的影響,它使一些根斜向生長,至少在初始階段有一部分鉆出了土壤容積。開溝器在5厘米
41、以下的深度對根系生長的影響并不明顯,即使在其它兩種土壤內(nèi),也要比正常深度減少,試驗田A的高根系容積密是由于極低的滲透阻力和大量有機碳含量導(dǎo)致的。</p><p> 對于根系的直徑,兩種開溝器對在不同測試地和不同深度影響并不明顯,盡管這種根系的特征受土壤物理特性的影響。例如:滲透阻力隨開溝器的不同而不同。盡管如此,在這項研究中也要求滲透阻力的值不能太高,不能超過400Kpa(實驗田C,深度:5厘米)。</p
42、><p><b> 4.結(jié)論 </b></p><p> 在意大利,對低環(huán)境影響和低成本的土壤耕作制的關(guān)注,使他們注重新型機器的設(shè)計,在這一項研究中,一種新型雙翼型開溝器對土壤特性的影響和雙圓盤開溝器對土壤特性的影響相比有明顯不同。雙翼型開溝器由一個平行連桿體系連接,在統(tǒng)一播種深度和清除作物殘留物的土壤耕作中達到了較高的程度,它還影響滲透阻力和容重,雖然這些參數(shù)有所降
43、低,但是仍然超過了雙圓盤開溝器。它的平整性明顯影響了播種深度,稍微降低了根系的生長及其生長方向,但對直徑并無影響,在玉米生長3個月的時候,在頂層5厘米的黏土地中有少許的有機碳。各種溝的特性表現(xiàn)在兩種開溝器在不同土壤中的穩(wěn)定性,在某些情況下,由于某些特性的初始條件(例如水分減少、土壤容重等)的變化是明顯的,尤其是雙圓盤開溝器。</p><p> 這些發(fā)現(xiàn)是一個少有的綜合運用力學(xué),物理學(xué)和土壤根系生態(tài)學(xué)的例子,它表
44、示為了更好的了解農(nóng)業(yè)機械的運作,應(yīng)當考慮幾個緊密結(jié)合的研究課題。</p><p><b> 鳴謝</b></p><p> 我們感謝克勞德在工業(yè)制圖方面的幫助和加布里埃爾對英文所做的修改。</p><p> Effects of a new wide-sweep opener for no-till planter on seed zon
45、e properties and root establishment in maize (Zea mays, L.): A comparison with double-disk opener </p><p><b> Abstract</b></p><p> According to the kind of opener applied, no-tilla
46、ge seeders can variously modify soil physical properties in relation to soil and climate conditions, thus potentially affecting crop emergence and early growth.</p><p> The technological evolution of seeder
47、s for direct drilling of arable crops, progressively achieved in recent years, has been considerable, but new improvements now available need to be individually tested. In a field trial at Udine (NE Italy), the effects o
48、f a new kind of wide-sweep opener (i.e., side coulters curved upwards in their final part and slightly angled towards the direction of work) on soil physical properties in the seed zone and on crop emergence and early ro
49、ot growth of maize were</p><p> With respect to the double-disk opener, in general the wide-sweep type led to higher soil–residue mixing—without excessive reduction of the soil-covering index being observed
50、, ?27 and ?6%, respectively. The wide-sweep opener also showed lower bulk density and soil penetration resistance in the top 5-cm soil layer of the seed furrow, although no greater root length density was found in maize
51、at the three-leaf stage, probably due to the smoothing effect caused by the side coulters at the seeding d</p><p> Deviations from this general behaviour in the various soils (texture and initial conditions
52、) are discussed. </p><p> Keywords: Maize; No-tillage; Opener type; Root growth; Seed zone physical properties </p><p> Abbreviations: CI, covering index; DAS, days after sowing; DDO, double-d
53、isk opener; FRSD, furrow roughness standard deviation; PR, penetration resistance; RI, residue incorporation; RLD, volumetric root length density; SOC, soil organic carbon; WSO, wide-sweep opener </p><p>
54、1. Introduction</p><p> In the last few years, the economic and environmental implications of conventional tillage, such as erosion, compaction and inverting soil layers, have led to re-examination of no-ti
55、llage even in Italy. Especially, in the heavy soils of this country, deep ploughing aims at increasing soil porosity, at least temporarily, in order to create suitable conditions for both seed germination and root growth
56、. Simplification of weed management and higher grain yields of summer crops like maize are general</p><p> The performance of no-tillage seeders depends on several factors related to field conditions, inclu
57、ding type and amount of residues at soil surface, opener design and the crop to be sown. The implements of these seeders must have high flexibility, so that various crops can be sown in differing field conditions with co
58、rrect seed deposition (e.g., density, distance, depth). In no-tillage practices, the characteristics of the seed-furrow play an important role in germination. Many authors have poin</p><p> Many of the char
59、acteristics of the seed zone in no-tillage depends on the type of opener attached to the seederand the two main types used – tine and disk – may lead to great differences. The tine opener typically creates an appreciable
60、 bursting effect in the soil and generally moves a considerable quantity of fine damper aggregates towards the soil surface – a fact particularly appreciable in tools having an asymmetric shape but which may be negative
61、if a rainless period occurs after sowing, as</p><p> It is widely recognised that management of crop residues (previous crop) is one of the most important constraints for adopting no-tillage. Tine openers s
62、hift organic debris in the soil surface from the crop row sideways, with possible plugging of the seeder in the case of heavy residues, whereas disk openers may lead to “hairpinning”, with a consequent bad soil/seed cont
63、act and possible toxic effect on seedlings. Unmanaged residues can create many problems in direct sowing, but their presence at</p><p> As regards soil and climate conditions, openers should achieve several
64、 aims, like uniformity of sowing – i.e., spacing and depth – production of a suitable amount of fine soil aggregate to ensure soil/seed contact, reduction of water losses, avoidance of seed contact with either fertilizer
65、s or crop residues and limitation of furrow compaction, which may obstruct root growth. The type of opener was found to affect emergence and plant establishment markedly, especially in crust-forming soils, for </p>
66、<p> The technological evolution of no-tillage seeders for arable crops, progressively achieved in this sector, has been great, but the large number of improvements now available must be individually tested and c
67、arefully evaluated. In addition, much of the literature on this subject refers almost exclusively to opener/soil interactions, without analysing effects on crop growth. The effects of furrow shape and its properties on t
68、he draft force required by different opener types have been widely studie</p><p> In this framework, the present study evaluates the performance of an innovative wide-sweep opener, linked to the frame by a
69、double linkage unit. Its effects on some soil physical properties in the seed zone, crop emergence and early root growth of maize were evaluated in various soils over a 2-year period in NE Italy and compared with those o
70、f a double-disk opener, which is the most widespread in Italy.</p><p> 2. Materials and methods</p><p> 2.1. Description of equipment</p><p> The performances of a new wide-sweep
71、 opener (WSO) with which the no-till air seeder Cerere (Tecnoagricola, Udine, Italy) has been equipped, was compared with that of a double-disk opener (DDO) adopted by the no-till planter Max Emerge 2 (John Deere Italia,
72、 Milan, Italy). </p><p> The WSO has a straight axis, ending with a front chisel and two rear side 18-cm wide coulters, which are slightly angled towards the direction of work and curved upwards (90°)
73、in their final part (25 mm high) (Fig. 1). The front chisel cuts soil 25–30 mm deeper than the coulters. Seed delivery to each unit is through a single pneumatic tube from the centralised volumetric metering sy
74、stem, which allows the seeder to assume a certain degree of polyvalence. Although various types of deposition (i.e</p><p> Fig. 1. (a) front chisel; (b) side coulter; (c) end of coulter (curved upward
75、s); (d) multiple seed dispenser; (e) part of parallel linkage. </p><p> The structure of the seeder equipped with the WSO includes one rigid and one folding frame. The first is supported by a front head-sha
76、ft to couple the seeder to the tractor and two rear low-pressure wheels for transport. The folding frame aims at guaranteeing that the soil profile can be followed by the openers as regularly as possible. For this reason
77、, it has three independent jointed sections, each 1.5 m wide and linked to the rigid frame with four elastic joints. Each section has five openers</p><p> Fig. 2. no-till air seeder with a wide-s
78、weep opener (top) and no-till planter with double-disk opener (bottom)</p><p> The seeder equipped with the DDO is an eight-unit mounted no-till planter with pneumatic seed metering and 0.75 m row spac
79、ing, resulting in a 6 m working width. The DDO used here is composed of a single, fluted, round-bladed coulter and a double-disk, associated with two side rollers and two rear V-mounted wheels (Fig. 2). </p>
80、<p> Performance valuation of opener types requires differences among seeders to be kept to a minimum, although this is not always completely possible, especially when opener design differs greatly, as happened in
81、this case study. Nevertheless, the following results exclusively focus on those parameters of the seed zone which were mainly affected by the working system of openers and associated press wheels rather than by other mec
82、hanical components. </p><p> 2.2. Field trials</p><p> Tests were conducted over a period of 2 years (2002–2003) at a private farm in Teor (Udine, NE Italy: 45°55′N, 13°10′E, 8
83、m a.s.l.) in four fields with differing initial conditions (Table 1). The effects of openers were evaluated on some soil physical properties in the seed zone, surface soil morphology and crop emergence and early root gro
84、wth of maize (Zea mays, L.). </p><p><b> Table 1. </b></p><p> Initial conditions of four fields in 2-year trial and soil characteristics in Teor (NE Italy) </p><p>
85、In 2002, soils were both clay, with differing amounts of soil organic carbon (SOC), 1.45 and 2.27% in fields A and B, respectively. In 2003, the two fields had a different soil texture, with silty loam (field C) and silt
86、y-clay loam (field D), but with values of SOC which were more similar than in 2002. According to the FAO classification, the soils of all fields were classified as Eutric fluvisols. </p><p> Following suppr
87、ession of cover crop with herbicide in March of both years, maize was sown on April 26, 2002 and April 15, 2003, according to a theoretical population density of 8.2 and 7.7 plants m?2 and within-row distances of 27
88、.1 and 17.3 cm for WSO and DDO, respectively. The small discrepancy of seed density between openers was the minimum possible, compatible with the adjustment variations of the seeders. In any case, at least within th
89、e aim of this research, the different plant spacing bet</p><p> In the test location, annual rainfall, as average of period 1961–1990, is 1200 mm, 680 mm (57%) of which falls between April and Aug
90、ust. The annual average temperature is 12.9 °C, with a monthly peak in August (24 °C) and a minimum in December (1.5 °C). During the 2003 crop cycle (April–August), the average temperature w
91、as higher and rainfall lower than the reference 30-year period values, whereas in 2002, the opposite occurred for temperature but rainfall was very similar. In fact, total rainfa</p><p> Experimental observ
92、ations on soil physical properties and root density of maize were completed within 25 days of sowing and no water was applied during this period. Data were measured after the complete passage of the seeder, so that soil
93、parameters were affected by both opener and press wheels, allowing comparisons between seeding units. </p><p> 2.3. Sowing depth</p><p> In 2002 and 2003, respectively, at complete emergence,
94、 along four and two transects laid across five sowing rows, one seedling per row – therefore, a total of 20 and 10 plants – was completely extracted from the soil, allowing the length of the chlorophyll-free coleoptile t
95、o be measured. This measure was considered as the depth of seed deposition; uniformity of sowing depth was calculated as the coefficient of variation of that depth, i.e., the ratio between standard deviation and theoreti
96、cal de</p><p> 2.4. Plant emergence</p><p> The emergence rate was calculated as the percentage of emerging seedlings counted in a 3-m2 sampling area distributed over five sowing rows (eight a
97、nd five replicates in 2002 and 2003, respectively), at different times after sowing. Counts were made 8, 10, 12, 14, 21 and 25 days after sowing (DAS) in 2002 and 6, 8, 14, 19 and 25 DAS in 2003. The percentage of emerge
98、nce was determined as the ratio between number of emerging seedlings counted at each time with respect to their final number (last o</p><p> Coefficients of regression c, b and m and the coefficient of dete
99、rmination (R2) of each curve (treatment) are listed in Table 2. Graphically, the coefficients indicate the maximum Y value (c), the x value at half c (m) and the slope at flex (b). </p><p><b> Table 2
100、</b></p><p> Coefficients of regression (±S.D.) (Gompertz model) describing time-course of emergence in various treatments </p><p> 2.5. Seedbed roughness</p><p> Soil
101、 disturbance at the surface caused by the openers was measured across sowing rows (five replicates in both years) in terms of seedbed roughness. </p><p> The contour of the soil profile was marked with blac
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 免耕播種機雙圓盤開溝器結(jié)構(gòu)參數(shù)對作業(yè)性能影響研究.pdf
- 免耕播種機開溝圓盤熱處理工藝數(shù)值模擬.pdf
- 免耕播種機開溝圓盤制造工藝研究及性能試驗.pdf
- 氣吸式免耕播種機開溝器結(jié)構(gòu)分析與性能研究.pdf
- 【畢設(shè)全套】大豆 玉米種子播種機 排種器 排肥器 開溝器的設(shè)計cad圖紙
- 稻板田免耕油菜播種機開溝部件的試驗研究.pdf
- 雙圓盤開溝機的設(shè)計和研究
- 驅(qū)動圓盤破茬式玉米免耕播種機試驗研究.pdf
- 免耕施肥播種機開溝工作部件仿真與試驗研究.pdf
- 玉米免耕播種機維護與保養(yǎng)
- 玉米免耕播種機維護與保養(yǎng)
- 基于離散元法的免耕播種開溝器的設(shè)計與試驗.pdf
- 大豆旋耕開溝播種機的設(shè)計與試驗研究.pdf
- 小麥旋耕開溝播種機的設(shè)計與試驗研究.pdf
- 玉米免耕播種機的設(shè)計與研究.pdf
- 舵輪式玉米免耕播種機研究.pdf
- 圓盤開溝機的使用和調(diào)整
- 調(diào)虧灌溉播種機開溝器施水性能的研究.pdf
- 玉米清茬免耕施肥精量播種機
- 免耕播種機劃行器和牽引架的虛擬樣機設(shè)計研究.pdf
評論
0/150
提交評論