版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Structural analysis in control systems design of hydraulic drives</p><p> Benno Stein, Elmar Vier</p><p> Abstract:The design of hydraulic control systems is a complex and time-cons
2、uming task that, at the moment, cannot be automated completely. Nevertheless, important design subtasks like simulation or control concept selection can be efficiently supported by a computer. Prerequisite for a successf
3、ul support is a well-founded analysis of a hydraulic system's structure. This paper provides a systematics for analyzing a hydraulic system at different structural levels and illustrates how structural inf</p>
4、<p> Keywords: Algorithms and knowledge-based methods for CACSD; Structural analysis of hydraulic systems; Graph theory</p><p> 1. Introduction</p><p> Hydrostatic drives provide advant
5、ageous dynamic properties and therefore represent a major driving concept for industrial applications. Large-scale hydraulic systems such as plants in marine technology as well as drives for machine tools possess a large
6、 number of actuators. Consequently, sophisticated inter-dependences between single components or entire subsystems may occur, which leads to a variety of challenging and demanding design and control tasks. As a represent
7、ative example with respect </p><p> different types of couplings between the functional units of a hydraulic system, hence establishing a basis for a computer-based analysis. Moreover, it is outlined how a
8、structural analysis is automated. Section 5 outlines the exploitation of structural information within deco.</p><p> 2. Structural analysis of hydraulic systems</p><p> The majority of hydraul
9、ic systems is designed by exploiting the experience and intuition of a single engineer. Due to the lack of a structural methodology, a thorough analysis of the system structure is not carried out. Instead, a limited repe
10、rtory of possible solutions is used, making the result highly dependent on the capabilities of the individual. Such an approach is suitable only for recurring design tasks with little variation.In the following, a system
11、atics of the structural set-up of hyd</p><p> 2.1. Structural levels of hydraulic systems</p><p> The systematics developed here is based on three levels of abstraction. The differentiation be
12、tween functional structure, component structure, and system-theoretical structure corresponds to system descriptions of different characteristics (Fig. 2). From this distinction results an overall view of how to influenc
13、e the system's behavior. To illustrate the concept of structural levels, we will concentrate on a sample subsystem of the cold-rolling plant, the four-roll stand is sketched in Fig. 3.Th</p><p> Remarks
14、. While the functional structure yields a qualitative representation, the system description becomes more quantitative at the component and system-theoretical level, respectively. Moreover, the analysis of the structural
15、 set-up shows in which way the behavior of a hydraulic plant can be influenced (cf. Fig. 2): (1) at first, the functional structure must be considered as invariant, because it results from the customer's demands. Onl
16、y if the given structure proves to be unsatisfactory, a m</p><p> 2.2. Hydraulic axes and their couplings</p><p> Focusing on the investigation of the functional structure of hydraulic systems
17、, the detection and evaluation of hydraulic axes is of central interest. Their analysis contributes to a deeper understanding of the inner correlations of the plant and provides an overview of the energy flows with respe
18、ct to the functions to be fulfilled. The definition of the hydraulic axis given in Section</p><p> 2.1 is based on the criterion of elements working together in order to fulfill a single function. Note that
19、 several actuators (hydraulic motors/cylinders) may</p><p> contribute to the same function, thus forming a single hydraulic axis (Fig. 8). This situation is given for (a) identical sub-circuits that are co
20、ntrolled by one</p><p> single control element, (b) synchronized movements that are carried out by open or closed loop control, or (c,d) mechanical couplings such as guides and gear units that enforce a uni
21、que behavior. Beyond the consideration of isolated hydraulic axes, it is necessary to investigate their interdependences. The following coupling types have been worked out Level 0 (No coupling.) Hydraulic axes possess no
22、 coupling, if there is neither a power nor an informational connection between them. Level 1 (Info</p><p> called informationally coupled. Level 2 (Parallel coupling.) Hydraulic axes which possess their own
23、 access to a common power supply are coupled in parallel. Level 3 (Series coupling.) A series coupling connects the hydraulic axes whose power supply (or disposal) is realized via the preceding or the following axis. Lev
24、el 4 (Sequential coupling.) A sequential coupling is given, if the performance of a following axis depends on the state variables, e.g. the pressure or the position of the preceding</p><p> Applying the con
25、cept of functional structure to the cold-rolling plant of Fig. 1, 15 hydraulic axes along with their couplings can be found. The left-hand side of Fig. 9 envisions the membership of the components in the diagram to the a
26、xes, the right-hand side shows the entire coupling scheme in the form of a tree.</p><p> 3. Benefits of a structural analysis</p><p> A structural analysis of hydraulic systems reveals basic d
27、esign decisions. Especially the functional analysis, which is based on the detection of a system's hydraulic axes, will simplify the modification, the extension, and the adaptation of the system (Stein,1996). The sep
28、arate treatment of hydraulic axes remarkably reduces the design effort within the following respects: Smart simulation. Smart simulation is a human strategy when analyzing a complex system: subsystems are identified, cut
29、 free,</p><p> application of modification knowledge has to consider the axes' coupling levels.Control concept selection. The consideration of couplings between input and output variables supplies a nec
30、essary decision basis for the selection of control concepts. Analyzing the decouplability matrix D (Schwarz, 1991) yields a common approach here. Note that the system order that can be tackled is limited. The functional
31、structure analysis provides a separation into (1) SISO systems, to which standard methods of </p><p> coupling type will give further answers with respect to defect components. Hesse and Stein (1998) descri
32、be a system where this idea has been set into operation. Note that a smart classification of the couplings between hydraulic axes forms the rationale of whether a decomposition of a hydraulic design problem is permissibl
33、e. While subsystems with level 0 or level 1 couplings can always be cut free, additional information is required for parallel, series, and sequential couplings.</p><p> 在液壓傳動(dòng)控制系統(tǒng)設(shè)計(jì)的結(jié)構(gòu)分析</p><p>
34、<b> 本諾·斯坦,艾瑪四</b></p><p> 摘要:液壓控制系統(tǒng)的設(shè)計(jì)是一項(xiàng)復(fù)雜的任務(wù),而且費(fèi)時(shí),此刻,不能完全自動(dòng)化。然而,重要的設(shè)計(jì)任務(wù)是仿真或控制概念選擇計(jì)算機(jī)能有效地支持。一個(gè)成功的先決條件是一個(gè)很好的支持建立一個(gè)液壓系統(tǒng)的結(jié)構(gòu)分析。本文提供了一個(gè)系統(tǒng)的分析在不同的結(jié)構(gòu)層次,液壓系統(tǒng),說(shuō)明了結(jié)構(gòu)信息,可以在設(shè)計(jì)過(guò)程中的應(yīng)用。本文的另一個(gè)重要的一點(diǎn)是自動(dòng)提取結(jié)構(gòu)
35、信息從一個(gè)電路圖用圖論的理論研究方法。</p><p> 關(guān)鍵詞:CACSD算法和基于知識(shí)的方法;液壓系統(tǒng)的結(jié)構(gòu)分析;圖論</p><p><b> 1。簡(jiǎn)介</b></p><p> 靜液壓驅(qū)動(dòng)提供了有利的動(dòng)態(tài)特性,因此代表了工業(yè)應(yīng)用的一個(gè)主要的驅(qū)動(dòng)概念。大型液壓系統(tǒng)如海洋科技廠以及機(jī)床的驅(qū)動(dòng)器具有大量的致動(dòng)器。因此,復(fù)雜的國(guó)際單部件或
36、整個(gè)子系統(tǒng)之間的依賴關(guān)系可能會(huì)發(fā)生,導(dǎo)致各種各樣的挑戰(zhàn)和要求,設(shè)計(jì)和控制任務(wù)。方面的復(fù)雜性和尺寸作為一個(gè)代表性的例子,圖1顯示了一個(gè)冷軋廠的電路圖(韋斯林,1995;ebertshaÈ用戶,1994)。在這里,20多個(gè)執(zhí)行器工作在連續(xù)帶鋼。這樣的大型液壓控制系統(tǒng)的設(shè)計(jì)意味著一個(gè)系統(tǒng)的方法。在實(shí)踐中,這是做得相當(dāng)含蓄}基于直覺(jué)和設(shè)計(jì)者的經(jīng)驗(yàn)。本文介紹了一種系統(tǒng)的靜液驅(qū)動(dòng),揭示其基本結(jié)構(gòu),以及結(jié)構(gòu)之間的關(guān)系和依賴dencies。這
37、種方法允許一個(gè)徹底的結(jié)構(gòu)分析,為設(shè)計(jì)過(guò)程的自動(dòng)化基本可以得出的結(jié)論。本文的概念已經(jīng)實(shí)現(xiàn),集成在德科,知識(shí)型液壓設(shè)計(jì)支持系統(tǒng)(斯坦,1995)。目前,裝飾結(jié)合基本CAD設(shè)施為uidics,檢查和結(jié)構(gòu)分析的算法,仿真方法,和基本的設(shè)計(jì)規(guī)則處理。液壓設(shè)計(jì)知識(shí)的運(yùn)作需要一個(gè)正式的定義和結(jié)構(gòu)信息的自動(dòng)提取從一個(gè)電路圖。本文在這些方面;它的組織結(jié)構(gòu)如下。第2節(jié)描述的概念和模范結(jié)構(gòu)水平在液壓系統(tǒng)可以進(jìn)行調(diào)查。第3節(jié)簡(jiǎn)要的闡述了</p>
38、<p> 一個(gè)液壓系統(tǒng)的功能單元之間的耦合不同的類型,因此,建立一個(gè)基于計(jì)算機(jī)的分析基礎(chǔ)。此外,它概述了如何結(jié)構(gòu)分析的自動(dòng)化。5節(jié)概述了結(jié)構(gòu)信息利用的裝飾。</p><p> 2。液壓系統(tǒng)的結(jié)構(gòu)分析</p><p> 液壓系統(tǒng)多數(shù)是利用經(jīng)驗(yàn)和一個(gè)工程師的直覺(jué)設(shè)計(jì)。由于一個(gè)構(gòu)造方法的不足,對(duì)系統(tǒng)結(jié)構(gòu)的深入分析,不進(jìn)行。相反,可能的解決方案是使用有限的劇目,使結(jié)果高度依賴于個(gè)人
39、的能力。這種方法只適合重復(fù)出現(xiàn)的設(shè)計(jì)任務(wù),幾乎沒(méi)有什么變化。在下面,一個(gè)系統(tǒng)的液壓設(shè)備的結(jié)構(gòu)設(shè)置的引入,導(dǎo)致一個(gè)面向問(wèn)題的系統(tǒng)分析。一種靜液壓傳動(dòng)給出一個(gè)初步的設(shè)計(jì)有利于隨之而來(lái)的、有目的的結(jié)構(gòu)信息的推導(dǎo)及其應(yīng)用,它是必要的,使系統(tǒng)的性能滿足客戶的需求。</p><p> 2.1。液壓系統(tǒng)的層次結(jié)構(gòu)</p><p> 這里開(kāi)發(fā)的系統(tǒng)是基于三個(gè)層次的抽象。之間的功能結(jié)構(gòu),分化的組成結(jié)構(gòu),
40、以及系統(tǒng)的理論結(jié)構(gòu)對(duì)應(yīng)于不同的特點(diǎn),系統(tǒng)的描述(圖2)。從這種區(qū)別,結(jié)果總的看法如何影響系統(tǒng)的行為。說(shuō)明結(jié)構(gòu)層次的概念,我們將集中在冷軋廠一個(gè)樣品子系統(tǒng),四輥架被描繪在圖3。功能結(jié)構(gòu)表明液壓回路中的動(dòng)作的基本模式,通過(guò)分析不同的任務(wù)(功能)的工廠已經(jīng)完成。它代表了一種定性的系統(tǒng)描述。一個(gè)關(guān)鍵的元素在功能結(jié)構(gòu)是所謂的` `液壓軸”,它的定義如下。液壓軸代表和實(shí)現(xiàn)整個(gè)液壓廠隸屬函數(shù)f。一個(gè)定義在這些工作,控制的相互連接,并供應(yīng)元件,實(shí)現(xiàn)F四
41、輥液壓致動(dòng)器站執(zhí)行兩個(gè)任務(wù)分別由定向負(fù)荷和運(yùn)動(dòng)量。在功能層面的表示在圖4中給出了輥站。液壓軸及其相互關(guān)系承認(rèn)深遠(yuǎn)的結(jié)論檢測(cè),在3節(jié)規(guī)定的水平。在組成結(jié)構(gòu)的功能實(shí)現(xiàn)所選擇的研究。裝置的結(jié)構(gòu)包括在液壓元件(泵,閥門,氣瓶信息,等)以及它們的幾何和物理布局。通過(guò)開(kāi)關(guān)結(jié)構(gòu)的開(kāi)關(guān)位置的可能的組合的整體特征是:一個(gè)閥門,例如,可打開(kāi)或關(guān)閉。圖6描述了軋機(jī)機(jī)架的表示在組件級(jí)別。該系統(tǒng)的理論結(jié)構(gòu)包含兩個(gè)液壓驅(qū)動(dòng)作為一個(gè)整體,其單一成分的動(dòng)態(tài)行為的信息。
42、描述動(dòng)力學(xué)的常用方法是微分方程和差分方程或狀態(tài)空間形</p><p> 備注。而功能結(jié)構(gòu)產(chǎn)生的定性描述,系統(tǒng)描述在組件和系統(tǒng)的理論水平更定量,分別。此外,該結(jié)構(gòu)設(shè)置的分析表明,一個(gè)水電廠的行為的影響(參見(jiàn)圖2):(1)首先,功能結(jié)構(gòu)必須被視為不變的,因?yàn)樗鼇?lái)自于客戶的需求。如果給定的結(jié)構(gòu)被證明是不能令人滿意的,修改}而產(chǎn)生的一種啟發(fā)式分析方法}是可取的;(2)注意到,在組件級(jí),啟發(fā)式和分析相結(jié)合的方法是對(duì)液壓元
43、件的變化或交換的需要,構(gòu)成控制系統(tǒng);(3)系統(tǒng)的理論水平方便的動(dòng)態(tài)行為的調(diào)查:控制理論提供了一個(gè)合適的控制策略,選擇一種解析方法的參數(shù),等等。</p><p> 2.2。液壓軸和聯(lián)軸器</p><p> 針對(duì)液壓系統(tǒng)的功能結(jié)構(gòu)的調(diào)查,和液壓軸檢測(cè)評(píng)價(jià)是中央的興趣。他們的分析有助于植物內(nèi)部的關(guān)系有了更深的了解,提供的能量流的一個(gè)概述相對(duì)于功能得以實(shí)現(xiàn)。給出部分液壓軸的定義</p&g
44、t;<p> 2.1是根據(jù)元素在一起,致力于實(shí)現(xiàn)一個(gè)功能的標(biāo)準(zhǔn)。請(qǐng)注意,多執(zhí)行機(jī)構(gòu)(液壓馬達(dá)/氣缸)可能</p><p> 有助于相同的功能,從而形成一個(gè)單一的液壓軸(圖8)。這種情況給出了(一)相同的子電路是由一個(gè)</p><p> 控制單元,(B)的同步運(yùn)動(dòng),通過(guò)開(kāi)環(huán)或閉環(huán)控制下進(jìn)行的,或(C,D)機(jī)械接頭,如導(dǎo)軌和齒輪單元,執(zhí)行一個(gè)獨(dú)特的行為。除了考慮孤立的液壓軸
45、,它是必要的調(diào)查,他們的相互關(guān)系。下面的耦合類型已制定了0級(jí)(無(wú)耦合。)液壓軸沒(méi)有耦合,既沒(méi)有實(shí)力也沒(méi)有它們之間的信息聯(lián)系。1級(jí)(信息耦合。)液壓軸,只有通過(guò)控制連接連接</p><p> 所謂信息耦合。2級(jí)(平行耦合。)液壓軸具有自己進(jìn)入一個(gè)共同的電源并聯(lián)耦合。3級(jí)(串聯(lián)耦合。)一系列耦合連接液壓軸的電源(或處理)是經(jīng)前或以下軸實(shí)現(xiàn)。4級(jí)(順序耦合。)一個(gè)順序耦合是給定的,如果一個(gè)跟隨軸的性能依賴于狀態(tài)變量,
46、如壓力或前一個(gè)為了在一個(gè)序列中的工作位置。</p><p> 運(yùn)用泛函結(jié)構(gòu)的概念圖1的冷軋廠,15個(gè)液壓軸連同他們的聯(lián)軸器可以發(fā)現(xiàn)。圖9的左邊設(shè)想圖中的組件的軸的會(huì)員,右邊顯示在樹(shù)的形式,整個(gè)耦合方案。</p><p><b> 3。結(jié)構(gòu)分析的好處</b></p><p> 液壓系統(tǒng)的結(jié)構(gòu)分析揭示了決策的基本設(shè)計(jì)。尤其是功能分析,它是基于
47、一個(gè)系統(tǒng)的液壓軸檢測(cè),將簡(jiǎn)化修改,擴(kuò)展,和系統(tǒng)的適應(yīng)性(斯坦,1996)。液壓軸單獨(dú)處理顯著降低了設(shè)計(jì)的努力在以下幾個(gè)方面:智能仿真。智能仿真是人類的一種策略在分析一個(gè)復(fù)雜的系統(tǒng):系統(tǒng)識(shí)別,減少自由,并在他們自己的模擬。這種策略減少了計(jì)算的復(fù)雜性和簡(jiǎn)化對(duì)結(jié)果的解釋。液壓軸建立適合子系統(tǒng)可以減少自由,因?yàn)樗麄儓?zhí)行一個(gè)不可分割的同時(shí)完成任務(wù)。靜態(tài)設(shè)計(jì)。在驅(qū)動(dòng)概念的液壓軸信息(打開(kāi)/關(guān)閉中心,負(fù)荷傳感,再生電路,等)允許計(jì)算程序有關(guān)的靜態(tài)設(shè)計(jì)
48、的選擇。此外,本</p><p> 改性知識(shí)的應(yīng)用,考慮了軸的耦合水平控制概念的選擇。考慮耦合之間的輸入和輸出變量為控制概念的選擇的一個(gè)必要的決策依據(jù)。分析decouplability矩陣D(施瓦茨,1991)產(chǎn)生的一種常見(jiàn)的方法。注意,系統(tǒng)可以解決是有限的。功能結(jié)構(gòu)分析提供了一種分離成(1)的SISO系統(tǒng),其控制器的設(shè)計(jì)標(biāo)準(zhǔn)的方法可以應(yīng)用,和(2)的降階耦合的子系統(tǒng),它可以更有效地decouplability
49、影響甚至可能在所有。診斷。具有液壓電路分解成液壓軸,診斷過(guò)程可以集中到一個(gè)單一的軸根據(jù)以下假設(shè):如果癥狀僅僅觀察到一個(gè)單一的液壓軸,然后缺陷部件(S)必須在該軸組件。如果癥狀在多軸的軸線觀察,</p><p> 耦合式將與缺陷部件進(jìn)一步回答。黑塞和Stein(1998)描述了一個(gè)系統(tǒng),這種想法已經(jīng)被設(shè)置成操作。注意液壓軸之間的耦合智能分類形式是否水力設(shè)計(jì)問(wèn)題的一種分解是允許的理由。在0級(jí)或1級(jí)耦合總是可以減少自
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (節(jié)選)外文翻譯--體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響
- (節(jié)選)外文翻譯--體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響
- 外文翻譯--體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響(譯文).doc
- 外文翻譯--體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響(英文).pdf
- (節(jié)選)外文翻譯--體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響(譯文)
- 外文翻譯--體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響(譯文).doc
- 外文翻譯--體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響(英文).pdf
- 外文翻譯-智能石材切割液壓控制系統(tǒng)的設(shè)計(jì).doc
- 外文翻譯-智能石材切割液壓控制系統(tǒng)的設(shè)計(jì).doc
- 液壓傳動(dòng)與控制系統(tǒng)設(shè)計(jì)-半自動(dòng)液壓專用銑床液壓系統(tǒng)設(shè)計(jì)
- 外文翻譯--液壓傳動(dòng)系統(tǒng)設(shè)計(jì)與計(jì)算
- 溫度控制系統(tǒng)的設(shè)計(jì)(外文翻譯)
- 溫度控制系統(tǒng)的設(shè)計(jì)外文翻譯
- 溫度控制系統(tǒng)的設(shè)計(jì)外文翻譯
- 溫度控制系統(tǒng)的設(shè)計(jì)外文翻譯
- 速度控制系統(tǒng)設(shè)計(jì)外文翻譯
- 體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響【pdf+word】機(jī)械類外文翻譯
- 體積模量對(duì)液壓傳動(dòng)控制系統(tǒng)的影響【pdf+word】機(jī)械類外文翻譯
- 溫度控制系統(tǒng)的設(shè)計(jì)外文翻譯(英文)
- 外文翻譯--液壓傳動(dòng)系統(tǒng)設(shè)計(jì)與計(jì)算.doc
評(píng)論
0/150
提交評(píng)論