版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 外文資料名稱: An Intelligent Cavity Layout Design System for Injection Moulds</p><p> 外文資料出處: International Journal of CAD/CAM Vol 2,No.1,pp</p><p> 69~75(2002) </p><p>
2、 附 件: 1.外文資料翻譯譯文 </p><p> 2.外文原文 </p><p> 注塑模具的智能腔布置設(shè)計系統(tǒng)</p><p> 胡衛(wèi)剛,Syed Masood</p><p><b> 石如超 譯</b></p>
3、<p> 摘要:本文介紹了多腔注塑模具。多腔注塑模具是一種智能腔布置設(shè)計系統(tǒng)。該系統(tǒng)的目的是協(xié)助模具設(shè)計人員在腔布局設(shè)計,在概念設(shè)計階段。該復(fù)雜性和原則腔布局設(shè)計以及各屬地的注塑模具設(shè)計介紹。對于腔布局設(shè)計,從功能,整體結(jié)構(gòu)和總體過程中一一解釋。文中還討論了這些問題,作為知識表示和基于案例的推理在使用該系統(tǒng)的發(fā)展。系統(tǒng)的功能是用一實例說明了腔布局設(shè)計問題。</p><p> 關(guān)鍵詞:智能設(shè)計,腔
4、體布局設(shè)計,注塑模具設(shè)計,基于案例推理,系統(tǒng)設(shè)計。</p><p><b> 1、導(dǎo)言</b></p><p> 在制造過程中,注塑成型是一個最廣泛使用的生產(chǎn)工藝生產(chǎn)塑膠零件與高生產(chǎn)速度和很少或沒有整理需要對塑料制品等。過程包括注射液的塑料材料,從一個熱點成為一個封閉的模具,從模具中使塑料酷凝固和拔出成品。因為每一個新的塑料制品,注塑成型機,需要有新的注塑模具。設(shè)
5、計和制造注塑模,是一個費時和昂貴的過程和傳統(tǒng)上需要高度熟練的工具和模具制造商。注塑模具包括幾個部分,其中包括結(jié)晶器基地,有溶洞,導(dǎo)向銷,澆道,蓋茨,冷卻水渠道,幻燈片和噴射器。模具設(shè)計也受其他幾個因素,如部分幾何,模具素材,每腔模具。</p><p> 在計算機技術(shù)和人工智能智力中得到指示,以減少成本和時間,在設(shè)計和制造的一種注塑模具。注塑模具設(shè)計一直是主要的研究領(lǐng)域,因為它是一個復(fù)雜的過程涉及幾個子設(shè)計相關(guān)的
6、各種組件該模具,每個需要專業(yè)的知識和經(jīng)驗。模具設(shè)計,也影響到生產(chǎn)率, 模具維修成本,可制造模具, 和高質(zhì)量的注塑部分。大部分的工作在模具設(shè)計工作已經(jīng)向應(yīng)用系統(tǒng),知識為基礎(chǔ)的系統(tǒng)和人工智能情報,以補充大量專業(yè)知識,在傳統(tǒng)的設(shè)計過程。 kruth和willems研制出一種智能支持系統(tǒng)的設(shè)計注塑模具整合商用CAD / CAM系統(tǒng),關(guān)系數(shù)據(jù)庫和一個專家系統(tǒng)。提出了一個系統(tǒng)化方法論和知識庫,為注塑模具設(shè)計在并行工程環(huán)境。 raviwongse 和
7、allada制定了一個神經(jīng)網(wǎng)絡(luò)化設(shè)計輔助工具,計算出模具復(fù)雜性指數(shù),以幫助模具設(shè)計人員,以評估他們提出了模具設(shè)計對模具制造。制定了一個計算系統(tǒng)為工藝設(shè)計的注塑基于黑板為基礎(chǔ)的專家系統(tǒng)和基于案例推理方法,其中包括模具設(shè)計, 生產(chǎn)調(diào)度,成本估算和注塑</p><p> 參數(shù)。討論了注塑模具設(shè)計,從功能性透視使用功能設(shè)計知識。發(fā)展一個互動的以知識為基礎(chǔ)的CAD系統(tǒng)注射模具設(shè)計知識和圖形模塊。</p>&
8、lt;p> 幾項研究也取得了改善設(shè)計中的具體組成部分的注塑模具。 王景榮等制定了一個以知識為基礎(chǔ)的和面向?qū)ο笤O(shè)計方法的飼料系統(tǒng)注塑模具,它可以有效地設(shè)計類型, 位置和大小相當于一澆注系統(tǒng)在模具。也開發(fā)了軟件系統(tǒng),實現(xiàn)自動設(shè)計澆注并提供評價澆注設(shè)計基于特定的性能參數(shù)。提出了一套方法測定方向,在注塑模具設(shè)計的基礎(chǔ)上自動識別與提取削弱特點。在模具設(shè)計中通過計算削弱卷,最大限度地減少破壞了工作,在設(shè)計冷卻系統(tǒng)在注射模,并提出優(yōu)化設(shè)計根據(jù)
9、熱分析和設(shè)計靈敏度分析該冷卻階段的注射成型工藝。</p><p> 注塑模具設(shè)計中,其中有很少人注意設(shè)計的腔布局多腔注塑模具。腔布局設(shè)計影響到整個過程的注塑成型,直接, 由于這是其中一個最重要的階段,在模具設(shè)計過程。審議腔布局設(shè)計在注塑模具,在概念設(shè)計階段,將改善質(zhì)量注射成型產(chǎn)品。</p><p> 本文介紹了開發(fā)一個設(shè)計支持系統(tǒng),所謂智能腔布局設(shè)計系統(tǒng),為多腔注塑模具基于知識基礎(chǔ)和面
10、向?qū)ο蟮姆椒ā?它采用了基于案例,并裁定為基礎(chǔ)的推理到達布局解決方案。它是基于對商業(yè)軟件系統(tǒng)命名為綜合開發(fā)平臺,讓顧客發(fā)展自己的知識為基礎(chǔ)的系統(tǒng)。該目的是要充分利用現(xiàn)有的技術(shù)人工智能在協(xié)助模具設(shè)計師概念設(shè)計階段。</p><p> 2 、型腔布置設(shè)計在注塑模具</p><p> 目前的做法為注塑模具的設(shè)計,尤其是腔布局設(shè)計,在很大程度上取決于設(shè)計師的經(jīng)驗和知識。因此,它將是不可取利用知
11、識工程,人工智能和智能設(shè)計技術(shù)在創(chuàng)造一個可接受型腔布置設(shè)計在注塑模具準確,高效率。在模具設(shè)計中,大多數(shù)的格局腔布局和規(guī)則和原則腔布局設(shè)計也可以很容易的代表參與形式的知識, 它可以用來設(shè)計系統(tǒng)。</p><p> 例如,以選擇合適的布局模式設(shè)計主要是依賴于工作環(huán)境, 條件和要求的客戶,主要基于設(shè)計師的技能和經(jīng)驗。作選擇相互矛盾的因素,將依靠明顯設(shè)計師的知識和經(jīng)驗。這是相當適合智能化設(shè)計技術(shù),以用于系統(tǒng)設(shè)計這樣的情
12、況,特別是創(chuàng)新設(shè)計。</p><p> 注射模的設(shè)計,主要涉及考慮設(shè)計的下列要素:</p><p> ?。?1 )模具類型( 2 )有多少腔腔布局( 4 )流道系統(tǒng)( 5 )噴射系統(tǒng)( 6 )冷卻系統(tǒng)</p><p> ?。?7 )確定冷卻系統(tǒng)</p><p> ( 8 )圖形結(jié)果顯示,輸出</p><p>
13、; 3 、結(jié)構(gòu)和設(shè)計過程</p><p> 結(jié)構(gòu)智能腔布局設(shè)計系統(tǒng)是基于案例推理和推理設(shè)計圍繞軟件系統(tǒng)。所示的總體結(jié)構(gòu)可以看出,一般設(shè)計過程中開始與定義中的設(shè)計規(guī)格。該系統(tǒng)檢索出類似的案件,從案件基地通過計算之間的相似性案件和新的案例。如果解決不好,那么將利用以規(guī)則為基礎(chǔ)的推理雙方達成一項解決方案。如果解決的辦法是仍然不理想的話,那么用戶必須修改部分的初步設(shè)計規(guī)格。使用基于案例的技術(shù),在設(shè)計過程中使用戶能夠獲
14、得解決問題的設(shè)計問題更迅速和靈活的結(jié)構(gòu),知識基礎(chǔ)和數(shù)據(jù)庫的使用在發(fā)展是基于背后知識庫和數(shù)據(jù)庫結(jié)構(gòu),從軟件系統(tǒng)是上講,這是一個在商業(yè)上可用軟件開發(fā)平臺。</p><p><b> 4 、發(fā)展</b></p><p> 4.1 、分類知識 各種邏輯和步驟所涉及的版面設(shè)計, 有各種不同的知識,并需要以描述和代表在腔版面設(shè)計。該類型的知識,可分為五種基于面向?qū)ο螅?/p>
15、面向?qū)ο螅┑母拍睿质鋈缦拢?( 1 )設(shè)計實例/案例:以前設(shè)計的情況下,結(jié)合目前的設(shè)計實例( 2 )屬性:設(shè)計變量,特性設(shè)計問題( 3)規(guī)則:一般設(shè)計規(guī)則,設(shè)計經(jīng)驗( 4 )程序和/或模型:數(shù)值計算, 數(shù)學(xué)建模,分析,評價和程序。</p><p> 4.2 、基于案例的推理 基于案例推理法是依賴于第一案例名詞?;诎咐龣z索的基礎(chǔ)是"相似公制" 。因此,如何計算相似度顯然很關(guān)
16、鍵。 相似性度量讓每一個層面對應(yīng)于一個領(lǐng)域,其價值是在查詢,它們之間的距離的情況和查詢(對應(yīng)點在這多維空間)的計算方法是不同的,為序和名義領(lǐng)域的合作。 4.3 、距離為序領(lǐng)域的距離計算方法是: ( 1 )其中,自dij必須介于0和1 ,還必須介于0和1 。( 2 )其中,因為該公司與dij必須介于0和1 , 還必須介于0和1 。4.4 、驗證案例 驗證的情況是,以檢查是否每條可接受的情況下,找出最合適的一個,所以每個案件
17、應(yīng)相關(guān)的測試方法和測試結(jié)果都不同。 不僅如此,根據(jù)一定的條件,它的測試結(jié)果,設(shè)計問題,可視為解決方案原型為進一步完善。 4.5 、準則的有效性降低成本 隨著應(yīng)用空腔布局,兩種降低成本。一個是整體理論降低成本所取得的使用系統(tǒng)進行概念設(shè)計的注射液模具。另一種是實際成本降低的價值記錄在案例中,其中可能被用來做案例庫推理,如果案件以"降低成本"為理論之一,就沒有必要的任何標準的有效性,降低成本,因為節(jié)省成本將明顯地
18、走出來</p><p> 6 、結(jié)論 問題的設(shè)計型腔布置多重腔注射模具由電腦輔助設(shè)計支持系統(tǒng)。 注塑成型由計算機為基礎(chǔ)的設(shè)計系統(tǒng)提供,極大的節(jié)省了時間和成本,在達成最佳布局。 發(fā)展智能腔布局設(shè)計系統(tǒng))相信是第一次嘗試在這個方向利用知識為基礎(chǔ)的方針。該發(fā)展注塑模具是基于在Windows環(huán)境下PC機。從實際的角度來看,可以用來作為一種工具來設(shè)計以落實腔布局設(shè)計的注射液模具在概念設(shè)計階段。它提供了一個積極一步
19、的發(fā)展,完全自動化注塑模具設(shè)計過程中,從產(chǎn)品模型模具制造。</p><p><b> 七、參考文獻</b></p><p> [1] Menges, G. et. al. (1986), “How to Make InjectionMolds”, Hanser Publisher, Munich.</p><p> [2] Kruth,
20、J.P. and Willems, R. (1994), “Intelligent supportsystem for the design of injection moulds”, Journal of Engineering Design, 4(5), 339-351.</p><p> [3] Lee, R-S, Chen, Y-M, and Lee, C-Z (1997), “Developmento
21、f a concurrent mould design system: a knowledge basedapproach”, Computer Integrated Manufacturing Systems,10(4), 287-307.</p><p> [4] Raviwongse, R. and Allada, V. (1997), “Artificial neuralnetwork based mo
22、del for computation of injection mouldcomplexity”, International Journal of AdvancedManufacturing Technology, 13(8), 577-586.</p><p> [5] Kwong, C.K. and Smith, G.F. (1998), “A computationalsystem for proce
23、ss design of injection moulding: combining blackboard-based expert system and casebasedAdvanced Manufacturing Technology, 14(4), 239-246.</p><p> [6] Britton, G.A., Tor, S.B., et. al. (2001), “Modellingfunc
24、tional design information for injection mould design”,International Journal of Production Research, 39(12),2501-2515.</p><p> [7] Mok, C.K., Chin, K.S., and Ho, J.K.L. (2001), “Aninteractive knowledge-based
25、 CAD system for moulddesign in injection moulding processes”, InternationalJournal of Advanced Manufacturing Technology, 17(1),27-38.</p><p> [8] Ong, S.K. Prombanpong, S. and Lee, K.S. (1995), “Anobject-or
26、iented approach to computer-aided design of aplastic injection mould”, Journal of IntelligentManufacturing, 6(1), 1-10.</p><p> [9] Irani, R.K. Kim, B.H. and Dixon, J.R. (1995), “Towardsautomated design of
27、the feed system of injection mouldsby integrating CAE, iterative redesign and features”,Transactions ASME Journal Engineering for Industry,117(1), 72-77.</p><p> [10] Nee, A.Y.C., Fu, M.W. et. al., (1997),
28、“Determination ofoptimal parting directions in plastic injection mould design”, Annals CIRP, 46(1), 429-432.</p><p> [11] Chen, L-L and Chou, S-Y (1995), “Partial visibility forselecting a parting direction
29、 in mould and die design”,Journal of Manufacturing Systems, 14(5), 319-330.</p><p> [12] Park, S.J. and Kwon, T.H. (1998), “Thermal and Designsensitivity analyses for cooling system of injection mould.Part
30、2:Design sensitivity analysis”, Transactions ASMEJournal Manufacturing Science & Engineering, 120(2),296-305.</p><p> [13] Lin, J.C. (2001), “Optimum gate design of freedominjection mould using the abdu
31、ctive network”, InternationalJournal of Advanced Manufacturing Technology, 17(4),297-304.</p><p> [14] Maher, M.L. et. al.. (1996), “Developing Case-BasedReasoning for Structural Design”, Intelligent System
32、 & Their Applications, IEEE Expert, USA, June.</p><p> [15] The Haley Enterprise, Inc. (1994), “Documentation ofRETE++”.</p><p> An Intelligent Cavity Layout Design System for Injection Mo
33、ulds</p><p> Weigang Hu and Syed Masood*</p><p> Abstract ??This paper presents the development of an Intelligent Cavity Layout Design System (ICLDS) for multiple cavityin jection moulds. The
34、system is intended to assist mould designers in cavity layout design at concept design stage. Thecomp lexities and principles of cavity layout design as well as various dependencies in injection mould design are introduc
35、ed. The knowledge in cavity layout design is summarized and classified. The functionality, the overall structure and general process of I</p><p> Keywords: Intelligent design, cavity layout design, injectio
36、n mould design, case-based reasoning, design support system</p><p> 1. Introduction</p><p> In manufacturing, the injection moul ding is one of he most widely used production processes for pro
37、ducing plastic parts with high production rate and little or no finishing required on plastic products. The process consists of injecting molten plastic material from a hot chamber into a closed mould, allowing the plast
38、ic to cool and solidify and ejecting the finished product from the mould. For each new plastic product, the injection moul ding machine requires a new injection mould. Design and m</p><p> With the advances
39、 in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of rese
40、arch since it is a complex processinvolving several sub-designs related tovari ous components of the mould, each requiring expert knowledge and experience. Mould design also affects the productivity ,mould maintenance co
41、st, manufacturability of mould ,and the qua</p><p> and graphic modules.</p><p> Several studies have also been made on improving the design of specific components of an injection mould. On ge
42、t. al. [8] developed a knowledge-based and objectoriented</p><p> approach for the design of the feed system for injection moulds, which can efficiently design the type, location and size of a gating system
43、 in the mould. Iraniet. al. [9] also developed a software system for automatic design of gating and runner systems for injection moulds and provide evaluation of gating design based on specified performance parameters. N
44、ee et. al. [10] proposed a methodology for determination of optimal parting directions in injection mould design based on automatic recognit</p><p> One area in injection mould design, which hasreceived lit
45、tle attention, is the design of cavity layout in a multiple cavity injection mould. Cavity layout design affects the whole process of injection moulding directly, since it is one of the most important phases in mould des
46、ign process. Consideration of cavity layout design in injection mould at concept design stage will improve the quality of injection moulded products because it is associated with the determination of many key factors aff
47、ect</p><p> This paper presents the development of a design support system, called Intelligent Cavity Layout Design System (ICLDS), for multiple-cavity injection moulds based on knowledge based and object o
48、riented approaches. It uses the case-based and ruled-based reasoning in arriving at the layout solution [14]. It is based on the commercial software system named “RETE++”, which is an integrated development platform for
49、customers to develop their own knowledge-based systems [15]. The objective is to make </p><p> 2. Cavity Layout Design in Injection Moulds</p><p> Current practice for injection mould design,
50、especially cavity layout design, depends largely on designers’ experiences and knowledge. It would therefore be desirable to use knowledge engineering, artificial intelligence and intelligent design techniques in generat
51、ing an acceptable cavity layout design in injection mould accurately and efficiently. In mould design, most of patterns of cavity layout and rules and principles of cavity layout design can also be easily represented in
52、the form of kno</p><p> For example, for the layout patterns shown in Fig. 1, the criteria to select the suitable layout pattern for design are mainly dependent on working environments, conditions and requi
53、rements of customer and are mainly based on designer’s skill and experience. To make a choice of contradictory factors will rely obviously on designer’s knowledge and experiences. It is rather suitable for intelligent de
54、sign techniques to be used in systems designed for such situations, especially for routine or inno</p><p> Design of injection mould mainly involves consideration of design of the following elements or sub-
55、systems:</p><p> (1) mould type</p><p> (2) number of cavities</p><p> (3) cavity layout</p><p> (4) runner system</p><p> (5) ejector system</p>
56、;<p> (6) cooling system</p><p> (7) venting</p><p> (8) mounting mechanism</p><p> Most of the elements are inter-dependent such that itis virtually impossible to produc
57、e a meaningful flowchart covering the whole mould design process. Someof the design activities form a complicated design network as shown in Fig. 2.Obviously, in injection mould design, it is difficult for designer to mo
58、nitor all design parameters. Cavity design and layout directly affects most of other activities.</p><p> The application of advanced knowledge based techniques to assist designer in cavity layout design at
59、concept design stage will greatly assist in the development of a comprehensive computer-aided injection mould design and manufacturing system. It is noted from Fig. 1 that a number of different layout patterns are possib
60、le with multiple cavities inside a mould. Higher the number of cavities of mould, higher the productivity of the injection mould. But this may lead to difficulties with issues suc</p><p> (1) definition of
61、design specifications including analysis and description of characteristics of design problem</p><p> (2) determination of mould type</p><p> (3) determination of number of cavities</p>
62、<p> (4) determination of orientation of product</p><p> (5) determination of runner type and runner configuration</p><p> (6) determination of type and position of gate</p><
63、p> (7) cavity layout conceptual design</p><p> (8) evaluation of ejection ability, manufacturingability and economic performances</p><p> (9) determination of cooling system</p><
64、;p> (10) graphic results display and output</p><p> 3. Structure of ICLDS and the Design Process</p><p> The structure of the Intelligent Cavity Layout Design System (ICLDS) is based on ca
65、se-based reasoning and ruled-based reasoning designed around the RETE++software system. Fig. 4 shows the overall structure of ICLDS schematically. Fig. 5 shows the general design process of ICLDS. The design process star
66、ts with the definition of design specifications. The ICLDS system retrieves similar cases from case base by computing the similarity between the cases and the new case. If the solution is satisfact</p><p>
67、The structure of knowledge base and database used in the development of ICLDS is based on the underlying knowledge base and database structure from the RETE++ software system, which is a commercially available software d
68、evelopment platform.</p><p> 4. Development of ICLDS</p><p> 4.1. Classifications of Knowledge</p><p> For various logic and steps involved in layout design, there are different
69、kinds of knowledge that needs to be described and represented in cavity layout design. The types of knowledge can be classified into five kinds based on object oriented (OO) concept as described below:</p><p&g
70、t; (1) Design instance/case: previous design cases and current design instances</p><p> (2) Relation: superclass-class-subclass relation, classin stance relation</p><p> (3) Attribute: design
71、 variables, features, attributes of design problem</p><p> (4) Rule: general design rules, design experiences</p><p> (5) Procedure and/or model: numeric calculation, mathematical modeling, an
72、alysis, evaluation and procedures.</p><p> 4.2. Knowledge Representations</p><p> To describe each of these types of knowledge, the internal data structures of the ECLIPSE language, included i
73、n RETE++ inherently, can be used to make the object orientated representation of the design process as explained earlier.</p><p> 4.3. Case-based Reasoning</p><p> Case-Based Reasoning (CBR) i
74、s dependent firstly on case retrieved. Case-based retrieval is based on “Similarity Metric”. Therefore, how to calculate the similarity is obviously the key technique in CBR, and it is described in detail as below. which
75、, since dij must range between 0 and 1, must also range between 0 and 1. which, since Wj and dij must range between 0 and 1, must also range between 0 and 1.</p><p> 4.4. Validation of Case</p><p
76、> Validation of case is to check up whether each acceptable case is suitable for current problem and to find out the most suitable one, so each case should be associated with testing methods and tested results on it.
77、 Only the case, under the given conditions, for which all tested results on it match those of the current design problem, can be considered as the solution prototype for further refining.</p><p> 4.5. Crite
78、ria for Validity of Cost Reduction</p><p> With the application of ICLDS for cavity layout, two kinds of cost reduction can be expected. One is the overall theoretical cost reduction achieved in using the s
79、ystem to carry out the conceptual design of injection moulds. The other is the practical cost reduction value recorded in the case base which may be used to do the case-base reasoning if the case has the “cost reduction”
80、 attribute. For the theoretical one, there is no need of any criteria for validity of cost reduction because the cost</p><p> 5. Example of Application</p><p> An application example, “determi
81、nation of cavity layout pattern” of the “conceptual design for cavity layout” provided by Intelligent Cavity Layout Design System (ICLDS) is given below: If the initial design conditions are:</p><p> (1) Wh
82、at type of mould is used? Two plate</p><p> (2) What type of runner is used? Cold runner</p><p> (3) How many cavities are there in mould? 6</p><p> (4) How long is it required f
83、or product to clear the moulding area? Small</p><p> 6. Conclusion</p><p> The problem of design of cavity layout in multiple cavity injection moulds has received relatively little attention i
84、n computer aided design support systems for injection moulding. A computer based design system will offer great savings in time and cost in arriving at the best possible layout from a number of alternatives. The developm
85、ent of Intelligent Cavity Layout Design System (ICLDS) is believed to be the first attempt in this direction using knowledge-based approach. The development of ICL</p><p> References</p><p> [
86、1] Menges, G. et. al. (1986), “How to Make Injection Molds”, Hanser Publisher, Munich.</p><p> [2] Kruth, J.P. and Willems, R. (1994), “Intelligent support system for the design of injection moulds”, Journa
87、l of Engineering Design, 4(5), 339-351.</p><p> [3] Lee, R-S, Chen, Y-M, and Lee, C-Z (1997), “Development of a concurrent mould design system: a knowledge based approach”, Computer Integrated Manufacturing
88、 Systems, 10(4), 287-307.</p><p> [4] Raviwongse, R. and Allada, V. (1997), “Artificial neural network based model for computation of injection mould complexity”, International Journal of Advanced Manufactu
89、ring Technology, 13(8), 577-586.</p><p> [5] Kwong, C.K. and Smith, G.F. (1998), “A computational system for process design of injection moulding: combining blackboard-based expert system and casebased reas
90、oning approach”, International Journal of Advanced Manufacturing Technology, 14(4), 239-246.</p><p> [6] Britton, G.A., Tor, S.B., et. al. (2001), “Modelling functional design information for injection moul
91、d design”, International Journal of Production Research, 39(12), 2501-2515.</p><p> [7] Mok, C.K., Chin, K.S., and Ho, J.K.L. (2001), “An interactive knowledge-based CAD system for mould design in injection
92、 moulding processes”, International Journal of Advanced Manufacturing Technology, 17(1), 27-38.</p><p> [8] Ong, S.K. Prombanpong, S. and Lee, K.S. (1995), “An object-oriented approach to computer-aided des
93、ign of a plastic injection mould”, Journal of Intelligent Manufacturing, 6(1), 1-10.</p><p> [9] Irani, R.K. Kim, B.H. and Dixon, J.R. (1995), “Towards automated design of the feed system of injection mould
94、s by integrating CAE, iterative redesign and features”, Transactions ASME Journal Engineering for Industry,</p><p> 117(1), 72-77.</p><p> [10] Nee, A.Y.C., Fu, M.W. et. al., (1997), “Determin
95、ation of optimal parting directions in plastic injection mould design”, Annals CIRP, 46(1), 429-432.</p><p> [11] Chen, L-L and Chou, S-Y (1995), “Partial visibility for selecting a parting direction in mou
96、ld and die design”, Journal of Manufacturing Systems, 14(5), 319-330.</p><p> [12] Park, S.J. and Kwon, T.H. (1998), “Thermal and Design sensitivity analyses for cooling system of injection mould. Part 2:De
97、sign sensitivity analysis”, Transactions ASME Journal Manufacturing Science & Engineering, 120(2), 296-305.</p><p> [13] Lin, J.C. (2001), “Optimum gate design of freedom injection mould using the abduc
98、tive network”, International Journal of Advanced Manufacturing Technology, 17(4), 297-304.</p><p> [14] Maher, M.L. et. al.. (1996), “Developing Case-Based Reasoning for Structural Design”, Intelligent Syst
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文資料翻譯---基于因特網(wǎng)的注塑模具智能設(shè)計系統(tǒng)
- 外文翻譯-- 注塑模具
- 注塑模具設(shè)計外文翻譯
- 注塑模具外文翻譯 模具外文翻譯檔
- 塑料注塑模具并行設(shè)計外文翻譯
- 注塑模具設(shè)計外文翻譯.doc
- 注塑模具設(shè)計外文翻譯.doc
- 注塑模具設(shè)計外文翻譯.doc
- 模具設(shè)計的外文翻譯-- 注塑模具設(shè)計
- 外文翻譯---塑料注塑模具并行設(shè)計
- 注塑模具設(shè)計外文翻譯.doc
- 注塑模具設(shè)計外文翻譯.doc
- 注塑模具設(shè)計外文翻譯.doc
- 外文翻譯--注塑模的一種智能化型腔布局設(shè)計系統(tǒng)
- 外文翻譯--注塑模的一種智能化型腔布局設(shè)計系統(tǒng)
- 外文翻譯--注塑模的一種智能化型腔布局設(shè)計系統(tǒng)
- 注塑模具設(shè)計外文翻譯.doc
- 外文翻譯=塑料注塑模具并行設(shè)計=4000字符注塑模具設(shè)計外文翻譯.doc
- 外文翻譯--針對塑料注塑模具的參數(shù)控制的型腔布局設(shè)計系統(tǒng)(節(jié)選)
- 外文翻譯--針對塑料注塑模具的參數(shù)控制的型腔布局設(shè)計系統(tǒng)(節(jié)選)
評論
0/150
提交評論