2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  附錄1</b></p><p>  蠟?zāi)>_成型在澆注中的實驗性研究</p><p>  摘要:澆注是經(jīng)常用于從犧牲模型中生產(chǎn)全功能的標準部件,這些模型(標準)可以用特殊的快速原形技術(shù)如立體圖或者三維尺寸印刷技術(shù)來制造。當(dāng)要求復(fù)合的多樣功能的模型時,制造蠟?zāi)1徊捎糜谶^度時期的工具。這個研究工作的目的是為了決定判斷出準確細致和精確的蠟?zāi)Ia(chǎn)

2、用于若干模型工具中。線性收縮常常在決定其精度上起著作用,蠟?zāi)踩雲(yún)?shù)常用于低壓噴入造型.蠟?zāi)33S糜谏a(chǎn)聚氨脂和矽樹脂橡膠工具。從這兩種相似的工具中他將展示出模型的精確度.可知,蠟?zāi)9ぞ呱a(chǎn)的產(chǎn)品模型有較高的收縮比這些有聚氨脂工具生產(chǎn)的產(chǎn)品。自然模型尺寸收縮分別是矽樹脂為3.44±0.40%而聚氨脂為1.70±0.60%。另外受壓制的尺寸收縮分別為在矽樹脂工具的應(yīng)用中是2.20±0.20%,在聚氨脂工具中的

3、應(yīng)用為1.40±0.20%。</p><p>  關(guān)鍵字:澆注 蠟?zāi)?尺寸精度</p><p><b>  介紹</b></p><p>  澆注模型能制造用快速模型技術(shù)能提供大多數(shù)成型輪廓,一些復(fù)雜的輪廓成型在選擇材料上有一些限制。然而當(dāng)要求需要多功能的模型部件時,這中過程成為太昂貴和使用蠟?zāi)W鳛檫^度工具派上用場。</p>

4、;<p>  多步驟的模型過程是易于被錯誤地計算介紹通過每一個時期,Mor-wod .et al。[1] 分析在澆注上的自始至終的錯誤累積過程,可以清晰的指示出最大的變化是被介紹通過在蠟?zāi)5拇蟪叽绲淖兓小?lt;/p><p>  澆注是被認為是一種多精度的鑄造過程在一系列的成型設(shè)計尺寸中,但是,有食品儲藏室改進了在鑄造中的尺寸精度。通常采用的公差的是±0.5%[3],但是更嚴格的公差可以被實

5、現(xiàn)在特定的環(huán)境中,為了增加提高澆注成型的形狀和尺寸精度,澆注過程需要更好更明白和更顯著的提升改進。</p><p>  模型典型的制造方式是將流動的蠟液澆入進一個印模里,使蠟液在印模里凝固,在更深的冷卻之后,將形成的蠟?zāi)挠∧V腥〕觥?蠟?zāi)>鹊挠绊懸蛩赜校合災(zāi)2牧?,澆注參?shù)(包括壓力,溫度,支持時間,冷卻率)以及模型的幾何形狀。模型幾何形狀的影響使特別困難的在預(yù)測引起尺寸的改變的原因使蠟?zāi)D?。幾何形狀的影響?/p>

6、一些現(xiàn)象,以及強加在收縮模型上的當(dāng)?shù)氐睦鋮s率喝當(dāng)時的限制條件,這樣導(dǎo)致一些復(fù)雜的不同收縮現(xiàn)象在模型上,可能影響蠟?zāi)沧⒌淖罱K尺寸的是澆注過程中的澆注參數(shù)。最近研究發(fā)現(xiàn)最大的澆鑄影響因素是澆注過程的時期包括澆注時間、填充時間、和支持時間。</p><p>  這項工作的目標是決定蠟?zāi)>壬a(chǎn)在寶石澆注擠壓的應(yīng)用,聚氨脂和矽樹脂橡膠過程工具是頻繁使用在快速模型中。經(jīng)過選擇的尺寸線性收縮過去常用于決定精度,這項研究的目

7、的不是全部的研究在蠟?zāi)沧⒌恼麄€領(lǐng)域。相反地,這僅僅打算用藍圖提供鑄造品這些過程的參數(shù)值在澆注中在最大尺寸上的模型精度。一件寶石的澆注擠壓常用來生產(chǎn)蠟?zāi)#瑱C器的高壓力澆注是十分困難的通常應(yīng)用于工藝上。</p><p><b>  試驗性結(jié)論</b></p><p>  2.1 樣品機構(gòu)的測試和測量</p><p>  圖1,展示了生產(chǎn)的測試樣品

8、等結(jié)構(gòu)。在選擇這個結(jié)構(gòu)模型時,下列因素時被考慮的:</p><p>  該模型應(yīng)該反映出鑄件的平均壁厚在昆士蘭制造協(xié)會(QMI)</p><p>  模型應(yīng)該考慮管理和測量,約束收縮和無約束收縮應(yīng)該要呈現(xiàn)自身的特色。</p><p>  尺寸考慮的因素指示在圖2中,這些尺寸的計算是從相關(guān)點的坐標得來得,如圖3中所示。坐標與測量使用的是坐標測量儀(CMM)僅僅尺寸4是

9、約束尺寸其他尺寸作為無約束尺寸來考慮對待。然而,在模型中出現(xiàn)收縮缺乏導(dǎo)致與收縮發(fā)生沖突,因而把這些尺寸作為特殊約束尺寸。</p><p><b>  2.2蠟?zāi)5膭?chuàng)建</b></p><p>  在圖1`中展示的立體圖模型是用于生產(chǎn)聚氨脂和矽樹脂橡膠工具(RTV)聚氨脂橡膠工具是用EbltaSG310和鋁粉來作為填充物制造的,其比率在1中是1:3.5</p>

10、;<p>  參數(shù)的配置能改變寶石的澆注壓力。參數(shù)包括澆注溫度,澆注壓力,模型預(yù)熱和在模型中的占用時間。相對于工業(yè)澆注壓力,澆注壓力在這些事件中涉及的是溶蠟通過孔進入印模中的壓力。在這個系統(tǒng)中當(dāng)充滿印模后壓力應(yīng)該被取消。這些試驗是采用獨特的澆注液和蠟使用QMI。表格1展示的是試驗進程和考慮合格的標準值,模型預(yù)熱使試驗在整個過程中保證40度,在印模中,主模的中心被填完時(對稱點)。參照試驗圖表,設(shè)置了24個測量點,每個蠟塊包

11、括26個尺寸,聚集在每一個工件中。</p><p>  蠟?zāi)5南嚓P(guān)尺寸的易變是由生產(chǎn)他們的印模的實際尺寸來決定的。印模的實際尺寸是決定使用檢查在圖3中有所展現(xiàn)。在印模和蠟?zāi)Vg呈現(xiàn)的不同是比率的相對改變,并不是尺寸改變而表示的收縮。</p><p>  表格1 澆注蠟?zāi)_^程參數(shù)值</p><p><b>  3結(jié)果和論證</b></p&g

12、t;<p>  測量數(shù)目是太大而不能在無規(guī)律的組成中被描述,為了統(tǒng)一和分析有意義的結(jié)果,數(shù)據(jù)經(jīng)過觀測分析判斷基本上分為以下幾組:</p><p>  存在由兩個方向的收縮,X方向(沿著字母H的手臂方向)和Y方向(見圖3所示)第三個方向,字母H的厚度方向,是沒有被測量的。</p><p>  存在兩種類型的幾何圖樣特點,這兩種類型為約束和非約束收縮。</p>&l

13、t;p>  收縮的程度可以依據(jù)幾何形狀的不同定義了X和Y坐標來協(xié)助表示如圖3所示。</p><p>  收縮的程度可以依據(jù)于模型的尺寸大小。有5個基本尺寸,100mm(尺寸標注為20,21和25,26)70mm(尺寸標注為4)20mm(圖中標注為22.23.和24)15mm(圖中標注為1-13除了4)</p><p>  尺寸14和19不是在收縮模型中直接測量的,他們是模型變形的測量

14、依據(jù)是澆注參數(shù)。舉個例子說明,澆注占用時期將決定模型自由收縮的時間。過長的澆注占用時期意味著蠟液的完全凝固,通過印模約束了收縮時間。這個變形的意義為從點17到20和25到28的垂直位置中字母H</p><p>  方向的角度偏差。如圖3所示。</p><p>  第一組(G—Ⅰ)由標注4組成,僅僅是收縮中的一個方向的約束。這收縮是在X方向被認為是過大的。經(jīng)歷這個形狀的保持收縮,由于在蠟?zāi):?/p>

15、印模表面兩者間的摩擦受到不約束和特殊約束,根據(jù)這樣我們劃分為以下三這組,</p><p>  G—Ⅱ組包括標注20,21,25和26,是過大的在Y方向上的收縮。</p><p>  G—Ⅲ組包括標注22,23和24,是過小的在Y方向的收縮(20mm)。</p><p>  G—Ⅳ組包括標注1到13除了4,是小的在X方向上的收縮。</p><p&

16、gt;  最后在描述其變形時分為了5組,事實上,除去第一組,剩下的被考慮的每一個點都是對稱的。在每一組里面收縮的平均值是采用比較兩種工具生產(chǎn)蠟?zāi)5牟煌Y(jié)果。表格2展示了這些不同的結(jié)果,首先,聚氨脂和矽樹脂工具的生產(chǎn)收縮的不同的變化展示在I到Ⅳ組,他們角度的改變不同變化在Ⅴ組,變化值用±%來表示評定的標準誤差。</p><p>  矽樹脂工具生產(chǎn)的模型有過大的扭曲變形導(dǎo)致了較大的收縮比用聚氨酯工具生產(chǎn)的模

17、型。第一組和第二組表示的是在全約束或特殊約束下表現(xiàn)出來的收縮是較小的比第三組和第四組在無約束條件的展示出來的收縮。對于這兩種工具,在全約束和特殊約束下展示出來的收縮平均值在標準誤差下是符合公差允許的。約束和非約束的尺寸收縮是非常不同的且是特別顯著的在應(yīng)用矽樹脂工具時。同時表現(xiàn)出來的現(xiàn)象是采用矽樹脂工具產(chǎn)生的變化是采用聚氨酯工具的變化的兩倍還大。</p><p>  在第四組和第五組表現(xiàn)出來的大的平均偏差相對于標準

18、誤差是進行了平均的結(jié)果。這種忽視事情的進程在他們之間相同改變易變的各種各樣的數(shù)值,他們的收縮情況可能依據(jù)于他們之間的相對位置關(guān)系和大小。采用逐步回歸的復(fù)原分析方法可以解釋出出現(xiàn)在這之間的進程參數(shù)和收縮情況在這每一個組成的團體中。</p><p>  P1=-0.0195Ti-0.27P+0.0041TiP+0.032HP-0.00048TiHP</p><p>  標準誤差=±0

19、.11%</p><p>  S1=-0.0352Ti+0.000132HP</p><p>  標準誤差=±0.12%</p><p>  P2=-0.34Ti+0.04H*H+2.7H-6P+0.0042Ti*Ti-0.031Tih</p><p>  標準誤差=±0.15%</p><p> 

20、 S2=-0.0043P+0.000021P*P+0.000109XY*Y-0.0093Ti㏒(XY)</p><p>  標準誤差=±0.17%</p><p><b>  P3=-1.5</b></p><p>  標準誤差=±0.46%</p><p><b>  S3=-3.46&l

21、t;/b></p><p>  標準誤差=±0.26%</p><p>  P4=-2.1XY+0.00033XY*Y-0.025XY-0.125H-5.5H*H</p><p>  標準誤差=±0.62%</p><p>  S4=-0.0243Ti+0.00033XY*Y-6.22H-0.01365H*H<

22、/p><p>  標準誤差=±0.41%</p><p>  P5=0.00834Ti-0.0087XY+0.0000667XY*Y-0.00129H*H</p><p>  標準誤差=±0.95%</p><p>  S5=0.0043XY+0.57㏒(H)-0.081㏒(XY)-0.000683P-0.0493H</

23、p><p>  標準誤差=±0.121°</p><p>  在這里的數(shù)值中P和S分別指示的是在使用聚氨酯和矽樹脂工具工作試驗是展示出來的收縮百分比。下標數(shù)字表示的是不同的組別團體的代號,舉例來說P1指第一組即G-I組中與聚氨酯有關(guān)的數(shù)值,Ti是指在澆注時注入的溫度(℃),H是指在其過程中占用的時間(分),P是指在澆注注入時的壓強(kPa),XY 是來自方向的與方向 X 或

24、 Y 的距離(m)并且時與標準誤差的比較的平均估計值,表示為預(yù)測的收縮標準的誤差值或是角度的扭曲的誤差值。</p><p>  這些統(tǒng)計分析的細節(jié)是不被提供的,把這些有用的相等的條件限制在QMI的鑄造練習(xí)和使用于特別的幾何測試部分,在這里他們的重要性通過這兩種工具來展現(xiàn)是非常明顯的。同時有計劃的約束誤差的估算表示了改進了的收縮超出了簡單的平均值。</p><p>  在G-I組里面,對于這

25、兩種工具約束包括了最有影響的蠟液溫度Ti注入壓力P和占用時間H,收縮的精度值兩者類似的差了差不多兩倍,(±0.20相對于±0.11)增加提高蠟液的溫度將增加收縮率,同時占用時間和注入壓力將相對減少。</p><p>  表格2 每一組的平均測量值</p><p>  注:FC-全約束,PC-部分約束,U-無約束</p><p>  在特殊的約束條

26、件下的事例,G-Ⅱ組那聚氨酯工具表現(xiàn)了相似的附屬關(guān)系和G-I組的全約束條件下差不多,同時矽樹脂工具生產(chǎn)的結(jié)果表示了增加約束依賴于位置的特點與占用時間沒有直接的關(guān)系。尺寸特點的坐標與冷卻率有關(guān)系,可給出蠟?zāi)5哪厅c,在這里沒有直接測量,坐標點可能是隱式的將給出重新計算點。</p><p>  G-Ⅲ組和G-Ⅳ組表示出來的尺寸是在無約束條件下產(chǎn)生的。這里聚氨酯和矽樹脂工具表現(xiàn)的不同變得更加明顯。聚氨酯工具展示出來的約

27、束依據(jù)于占用時間和坐標位置。矽樹脂表現(xiàn)出來的收縮主要式注入的蠟液溫度Ti。這些不同可以歸納于兩者的熱的傳導(dǎo)率的不同而引起的。在這兩種情況下的收縮精度的評價中,沒有增加回歸分析上的重要性,事實上在G-Ⅲ組的事例中,沒有相關(guān)的數(shù)值可以能評價這兩者的不同,這說明還有另外一些重要的因素、條件沒有被考慮在內(nèi),或者在這次試驗生產(chǎn)一些其他的條件沒有盡到足夠的精確測量。</p><p>  占用時間H和(XY)的坐標位置關(guān)系有著

28、顯著的影響在扭曲變形上,此外在聚氨酯作為生產(chǎn)工具時,蠟液的溫度Ti也能顯著的影響改變其扭曲變形。</p><p>  回歸復(fù)原分析法給出了有價值的結(jié)論,僅僅在約束和特殊約束的尺寸條件下,對于其他更多的尺寸情況,通過強烈的相互關(guān)系作用能決定這兩者的約束或變形以及過程參數(shù)。沒有完全準備好的特定數(shù)量關(guān)系作為收縮的傳導(dǎo)類似于誤差的傳導(dǎo),這些能從標準誤差中看出來。標準誤差沒有顯著提高當(dāng)標準誤差通過簡單的平均比較后,然而這些

29、數(shù)值給出了怎樣控制收縮和約束變形過程參數(shù)的前景。</p><p><b>  結(jié)論:</b></p><p>  約束和特殊約束尺寸,在平均上來說,在用矽樹脂工具中收縮了-2.20±0.20%,在用聚氨酯工具中收縮了-1.40±0.20%。</p><p>  無約束尺寸在平均上來說,收縮了-3.44±0.40%和

30、-1.70±0.60%分別對于矽樹脂和聚氨酯工具。</p><p>  蠟?zāi)5呐で冃问褂梦鶚渲瑫r兩倍多比使用聚氨酯工具。</p><p>  蠟?zāi)5臏蚀_度被定義是通過對標準誤差的評價從兩種類似的工具中。在他們的試驗中使用聚氨酯帶來的效益是高于使用矽樹脂工具的。蠟?zāi)5氖湛s使用矽樹脂是要考慮更多的因素比使用聚氨酯,可能是因為他們的冷卻率不同的緣故。大體說來大的收縮率導(dǎo)致難于控制其尺

31、寸。</p><p>  收縮尺寸的選擇能被簡化,當(dāng)然有更好的顯示,那就是通過在進程中對相互關(guān)系的參數(shù)控制,同時采用已開發(fā)的回歸復(fù)原方程分析法來解決。類似地,蠟?zāi)5呐で冃我矊⒈伙@示和控制。</p><p>  無約束尺寸展示出兩倍的易變性比約束尺寸。</p><p><b>  感謝</b></p><p>  作者非

32、常感謝鑄造合作中心(CAST)提供的經(jīng)濟支持,同時,特別感謝由QMI的鑄造基礎(chǔ)部的全體員工的大力支持。</p><p><b>  附錄2</b></p><p>  Experimental studies on the accuracy of wax patterns used in investment casting</p><p> 

33、 Abstract: Investment casting is often used to produce fully functional prototype components from sacrificial patterns. These patterns may be made using specialized rapid prototyping techniques such as stereo lithography

34、 or three-dimensional printing. When multiple functional prototypes are required, interim tools for making wax patterns are employed. The objective of this research work was to determine the precision and accuracy of wax

35、 patterns produced using several prototype tools. Linear cont</p><p>  Keywords: investment casting, wax pattern, dimensional accuracy</p><p>  1 INTRODUCTION </p><p>  Patterns for

36、 investment casting can be made using rapid prototyping techniques that can provide shapes of almost any complexity but in a limited choice of materials. However, when multiple functional prototype components are require

37、d, this process becomes too expensive and interim tools for wax pattern production are usually utilized.</p><p>  The multi-step prototyping process is prone to error accumulation introduced by each of the s

38、tages. Mor-wood etal [1] analyses the error propagation through-out the investment casting process and clearly indicated that the biggest variability is introduced by high dimensional variability of wax patterns.</p&g

39、t;<p>  Investment casting is considered to be one of the more accurate casting processes in terms of shape and dimensions [2]. Nonetheless there is still room for improvement in the dimensional accuracy of castin

40、gs. General tolerances quoted are ±0.5 per cent [3], but tighter tolerances may be achieved in certain circumstances. To increase the shape and dimensional accuracy of investment cast prototypes, the investment cast

41、ing process needs to be better understood and improved significantly [4]. Patter</p><p>  The aim of this work was to determine the accuracy of wax patterns produced using a jeweler’s injection press and pol

42、yurethane and silicone rubber interim tools that are frequently used I rapid prototyping. Linear contraction of selected dimensions was used to determine the accuracy. The purpose of this study was not thoroughly to rese

43、arch the entire topic of wax injection. Rather, it was intended to provide the foundry with a blueprint as to what process parameter values give the most dimension</p><p>  2 EXPERIMENTAL METHODOLOGY</p&g

44、t;<p>  2.1 Test specimen design and measurements</p><p>  Figure 1 shows the design of the test specimens produced. The following factors have been considered in choosing this design:</p><

45、p>  The pattern should reflect the average wall thickness of castings made at Queensland Manufacturing Institute (QMI).</p><p>  Pattern handling and measurement should be easy.</p><p>  Feat

46、ures with constrained and unconstrained shrinkage should be present. </p><p>  The dimensions considered were designated as shown in Fig.2. These dimensions were calculated from the coordinates of reference

47、 points, shown in Fig.3, measured using a coordinate measuring machine (CMM).</p><p>  Dimension 4 is the only constrained dimension, while the others are treated as unconstrained. However, lack of tapers in

48、 the pattern leads to friction during shrinkage, and hence classifies these dimensions as partially constrained.</p><p>  2.2 Creation of wax patterns</p><p>  A stereo lithography pattern of th

49、e polyurethane and the silicone rubber (RTV) tool. The polyurethane tool was made from Ebalta SG130 with aluminum powder as the filler, in a ratio of 1:1:3.5.</p><p>  A range of parameters can be altered on

50、 the jeweler’s injection press. These are injection temperature, injection pressure, mould preheat and holding time in the mould. In contrast to industrial injection presses, injection pressure in this case refers to the

51、 pressure forcing molten wax through the orifice and into the mould. Pressure is removed from the system after filling of the mould. These experiments are specific to the injection machine and the wax used at the QMI. Ta

52、ble 1 shows the seque</p><p>  The dimensional variability of the wax patterns was determined with reference to the actual dimensions of the moulds used to produce them. The dimensions of the moulds were det

53、ermined using the inspection plan from Fig.3. the difference between the mould and the wax pattern was presented as percentage relative change. Negative dimensional change indicated shrinkage.</p><p>  3 RES

54、ULTS AND DISCUSSION</p><p>  The number of measurements was too large to present data in raw form. To facilitate analysis and consolidate results into meaningful outcomes, the date were divided into several

55、groups based on the following observations:</p><p>  Two directions of shrinking exist, the X direction (along the connecting arm of the letter H) and the Y direction (see Fig.3). The third direction, the th

56、ickness of the letter H was not measured.</p><p>  Two types of geometrical feature exist, those with constrained and those with unconstrained shrinkage,</p><p>  The degree of shrinkage may dep

57、end on the position of the geometrical feature as defined by X and Y coordinates and expressed in millimeters (see Fig.3).</p><p>  The degree of shrinkage may depend on the size of the feature. There are ba

58、sically five sizes: 100mm (features 20,21,25 and 26),70mm (features 4),20mm (features 22,23 an 24) and 15mm (features 1 to 13 excluding feature 4).</p><p>  Dimensions 14 to 19 are not direct measurements o

59、f pattern shrinkage. They are a measure of the pattern distortion which may depend strongly on the injection parameters. For example, the holding time will determine the fraction of the time during which the wax pattern

60、is freely shrinking. A very long holding time means that the wax pattern fully solidifies while at all times being constrained by the mould. The distortion was defined as angular deviation of the arms of the letter H fro

61、m the verti</p><p>  The first group(G-I) consists of feature 4, which is the only dimension that is fully constrained while shrinking. It shrinks in the X direction and is considered to be large. The remain

62、ing features that undergo shrinkage are unconstrained or partially constrained owing to friction between the wax and mould surfaces. These can be further divided into three groups: </p><p>  1. Group G-II c

63、onsists of features 20, 21, 25 and 26, which shrink in the Y direction and are large.</p><p>  2. Group G-III consists of features 22, 23 and 24, which shrink in the Y direction and are small (20 mm).</p&

64、gt;<p>  3. Group G-IV consists of features 1 to 13, excluding feature 4, which shrink in the X direction and are small (15 mm).</p><p>  Finally, there is the fifth group (G-V) which describes the di

65、stortion. In all cases, apart from group G-I, the position of each feature with regard to the point of symmetry is also considered.</p><p>  The average contraction within each group was determined to allow

66、comparison of the two tools used to produce wax patterns. Table 2 shows the results, the first entry for the silicon and polyurethane tools indicating the dimensional change (G-I to G-IV) or angular deviation (G-V) with

67、± representing the estimated standard error.</p><p>  The silicone tool produced more heavily distorted patterns and caused greater contraction than the poly-urethane tool. Groups G-I and G-II represent

68、 features that are constrained or partially constrained and show less contraction than groups G-III and G-IV which freely contract. For both tools, the average contraction of constrained and partially constrained feature

69、s is equal within the tolerance defined by the standard</p><p>  errors. The difference between constrained and unconstrained dimensions is especially pronounced in the case of the silicone tool. It is also

70、apparent that distortion when employing the silicone tool is twice as great as that in the case of the polyurethane tool.</p><p>  Large deviations from average values indicated by the standard error within

71、groups G-IV and G-V are the result of averaging. This disregards the fact that process variables between patterns varied considerably and that contraction may depend on feature relative position and size. Regression anal

72、ysis revealed the following dependences between process parameters and the con-traction within each of the groups:</p><p>  P1=-0.0195Ti-0.27P+0.0041TiP+0.032HP-0.00048TiHP</p><p>  standard err

73、or=±0.11%</p><p>  S1=-0.0352Ti+0.000132HP</p><p>  standard error=±0.12%</p><p>  P2=-0.34Ti+0.04H*H+2.7H-6P+0.0042Ti*Ti-0.031Tih</p><p>  standard error=

74、77;0.15%</p><p>  S2=-0.0043P+0.000021P*P+0.000109XY*Y-0.0093Ti㏒(XY)</p><p>  standard error=±0.17%</p><p><b>  P3=-1.5</b></p><p>  standard error=

75、77;0.46%</p><p><b>  S3=-3.46</b></p><p>  standard error=±0.26%</p><p>  P4=-2.1XY+0.00033XY*Y-0.025XY-0.125H-5.5H*H</p><p>  standard error=±0.6

76、2%</p><p>  S4=-0.0243Ti+0.00033XY*Y-6.22H-0.01365H*H</p><p>  standard error=±0.41%</p><p>  P5=0.00834Ti-0.0087XY+0.0000667XY*Y-0.00129H*H</p><p>  standard erro

77、r=±0.95%</p><p>  S5=0.0043XY+0.57㏒(H)-0.081㏒(XY)-0.000683P-0.0493H</p><p>  standard error=±0.121°</p><p>  where P and S denote the linear percentage contraction fo

78、r the polyurethane and silicone tool respectively and the subscript numbers indicate the relevant group, i.e. P1 relates to polyurethane group G-I, Ti is the wax temperature at the time of injection (8C), H is the</p&

79、gt;<p>  holding time (min), P is the injection pressure (kPa), XY is the distance in direction X or Y from the origin (m) and standard error is the estimate of the average standard error for the predicted contrac

80、tion or angular</p><p>  distortion.</p><p>  The details of the statistical analysis are not provided, as the usefulness of these equations is limited to QMI’s foundry practices and the particu

81、lar geometry of the test part. Their importance here lies in showing which process parameters are the most influential within each</p><p>  group and for each tool. At the same time the estimated standard er

82、ror of the calculated contraction indicates the improvement in shrinkage estimation over simple averaging.</p><p>  Within group G-I, for both tools, contraction is influenced by wax temperature Ti , injecti

83、on pressure P and holding time H. The accuracy of approximation of the contraction is almost doubled ( ± 0.20 as against ± 0.11). The increase in wax temperature will increase the shrink-age, while holding time

84、 and pressure will decrease it.</p><p>  In the case of the partially constrained features, group G-II, the polyurethane tool exhibits similar dependences as in group G-I (fully constrained), while the silic

85、one tool produces results indicating that contraction additionally depends on the position of features with no connection to the holding time. The coordinates of the dimensions of</p><p>  the feature can be

86、 linked to cooling rate at a given point of the solidifying wax pattern. This has not been measured directly, and the coordinates of the feature may implicitly account for this, given that the conditions are repeatable.&

87、lt;/p><p>  Groups G-III and G-IV represent dimensions that shrink without constraint. There, the differences between the silicone and polyurethane tools become more apparent. The polyurethane tool shows that c

88、ontraction depends on holding time and the feature coordinates. The silicone tool shows that the contraction is additionally influenced by the temperature of the wax, Ti . These differences can be attributed to the diffe

89、rences in heat conductivity. In both cases the accuracy of estimation of contracti</p><p>  The holding time H and the position of the feature (XY) has significant impact on the distortion. Addition-ally, in

90、 the case of the polyurethane tool, wax temperature Ti significantly altered the distortion.</p><p>  The regression analysis gave worthy results only in the case of constrained and partially constrained dim

91、ensions. In all other cases, although a strong correlation was determined between the contraction or distortion and the process parameters, these were not really viable in quantitative terms as the spread of the contract

92、ion was similar to the spread of the errors. This can be seen from the standard errors, which did not improve significantly when compared with standard errors attained through</p><p>  4 CONCLUSIONS</p>

93、;<p>  The constrained and partially constrained dimensions, on average, shrink by -2.20 ± 0.20 per cent in the case of silicone tools and -1.40 ± 0.20 per cent in the case of polyurethane tools.</p&g

94、t;<p>  Unconstrained dimensions, on average, contract by - 3:44 ± 0:40 per cent and -1:70 ±0:60 per cent for silicone and polyurethane tools respectively.</p><p>  The distortion of wax pat

95、terns made using the silicone tool is twice as great as that in the case of wax patterns made using the polyurethane tool.</p><p>  The accuracy of wax patterns as determined by the estimate of standard erro

96、rs is similar for both tools. The benefit of using polyurethane tools over silicone tools is in their precision. Wax patterns made using the silicone tool shrink considerably more than those made by the polyurethane too

97、l, possibly owing to differences in solidification cooling rates. In general, greater con-traction leads to more difficult control of dimensions. The contraction of selected dimensions can be reduced, and </p><

98、;p>  ACKNOWLEDGEMENTS</p><p>  The authors would like to acknowledge the financial support from CAST (Cooperative Research Centre for Cast Metals Manufacturing). Also, many thanks are due to QMI’s investm

99、ent foundry staff for the support provided.</p><p>  REFERENCES</p><p>  1 Moorwood, G., Christodoulou, P., Lahnam, B. and Byrnes, D.</p><p>  Contraction of investment cast H13 too

100、l steel. Int. J. Cast</p><p>  Metals, 2000, 12, 457±467.</p><p>  2 Dimensional Tolerances for Metal and Metal Alloy Castings,</p><p>  1985 (British Standards Institution, Lo

101、ndon).</p><p>  3 Piwonka, T. S. and Wiest, J. M. Factors a V ecting invest-ment</p><p>  casting pattern die dimensions. INCAST, June 1998,</p><p><b>  8±13.</b>&l

102、t;/p><p>  4 Halford, B. Advanced low cost tooling manufacturing.</p><p>  Prototyping Technol. Int., 1997, 309±311.</p><p>  5 Horacek, M. and Lubos, S. In¯uence of injectio

103、n parameters</p><p>  on the dimensional stability of wax patterns. In 9th World</p><p>  Conference on Investment Casting, San Francisco, Califor-nia,</p><p>  1996, paper 1.</p

104、><p>  Table2 Average measured values for each group </p><p>  FC-fully constrained,PC-partially constrained,U-unconstrained</p><p>  Table 1 Process parameters for wax injection</p

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論