版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 中文3430字</b></p><p><b> 外 文 翻 譯</b></p><p> 積耗散最小換熱器的優(yōu)化設計</p><p> Entransy dissipation minimization for optimization of heat</p><p
2、> exchanger design</p><p> 性 質: ?畢業(yè)設計 □畢業(yè)論文</p><p> 積耗散最小換熱器的優(yōu)化設計</p><p> 李雪芳,郭江楓,徐明天&林城;程林學院熱科學與技術,山東大學,濟南250061,中國2010年7月16日收到;2011年3月15日接受</p><p> 摘
3、要:本文以水平衡的逆流換熱器為例,耗散理論應用于換熱器的優(yōu)化設計。在一定的條件下,分析確定最佳的管道縱橫比。當傳熱面積或管道的容積是固定的,得到最優(yōu)的質量速度和最小耗散率的解析表達式。結果表明,若降低換熱器的不可逆耗散,則熱交換面積必須盡可能加大,而質量流速應盡可能的減少。</p><p> 關鍵詞:火積,換熱器,優(yōu)化設計</p><p> 由于化石燃料的逐漸枯竭,燃料價格肯定會上漲。
4、因此,能源短缺是預見到制約經(jīng)濟和社會發(fā)展的不利因素。提高能源利用效率是解決能源危機的最有效的方法。換熱器廣泛應用于化學工業(yè),煉油廠,電力工程,食品工業(yè),和許多其他領域。因此,通過優(yōu)化設計提高換熱器的性能,減少不必要的能源消耗是很有價值的。</p><p> 換熱器優(yōu)化設計的目的可以分為兩類:一是盡量減少換熱器成本[1-5];另一是減少基于熱力學第二定律不可逆而制造的換熱器[6-10]。第一種方法可以降低成本,但
5、可能是以犧牲為代價換熱器性能[11]。第二種方法表示的是最小熵的理論,就是所謂的“熵產(chǎn)悖論”[8,11]。</p><p> 通過電傳導模擬,郭等人。定義一個新的物理概念,火積,它描述了傳熱性能[ 13 ]。基于這樣的理念,換熱器的等效熱阻的定義確定換熱器的傳熱不可逆性[ 14 ]。陳等人。應用耗散理論的傳導問題[ 15 ]。郭等人。定義一個耗散數(shù)評價換熱器性能,不僅避免了“熵產(chǎn)悖論”,但也可以表征換熱器整體性
6、能[ 12 ]徐等人,[ 16 ]開發(fā)了換熱器有限的壓降下的流摩擦耗散表達式。</p><p> 目前,基于耗散的熱傳導有限溫度差和流動摩擦壓降下的問題[ 14,16 ],郭等人提出的無量綱化方法[ 12 ]。定義了一個全面的耗散數(shù)。總火積耗散數(shù)為目標函數(shù)。假設我們試圖證明,由于導管的縱橫比或質量流速的變化,對兩種積耗散溫差下的熱傳導和流動阻力的影響下引起的有限的壓降,分別都有一個對應的最佳管道的縱橫比或質量流
7、速。我們還開發(fā)了有公式可循的優(yōu)化管的長徑比和熱交換器,用于優(yōu)化設計質量速度。</p><p><b> 1耗散數(shù)</b></p><p> 積定義為一半產(chǎn)品的熱容量和溫度</p><p><b> (1)</b></p><p> 其中T是溫度,qvh是定容熱容量,CP是在恒定壓力下的比熱。
8、現(xiàn)在,使用水平衡的逆流換熱器為例,討論在換熱器中的耗散。</p><p> 假定冷熱流體的壓縮。進氣溫度和熱、冷流體表示為T1和T2的壓力,P1,P2,分別。同樣,出口溫度和壓力是T1,T2和P1,P2。為平衡熱交換器,熱容量率比滿足條件(其中m是質量流量)。對于一維換熱器在目前的工作中,通常假設如穩(wěn)定流動,與環(huán)境無熱交換,并忽略動能和勢能的變化以及縱向傳導了。</p><p> 在換
9、熱器中,主要存在兩種不可逆性:一是有限的溫度差異下的熱傳導和第二流動摩擦壓降下有限。因熱傳導有限溫差下的耗散率寫為[ 14 ]</p><p><b> (2)</b></p><p> 相應的耗散數(shù)定義為[ 12 ]</p><p><b> (3)</b></p><p> 其中Q是傳熱
10、速率,是換熱器效能?被定義為實際的熱傳遞率達到最大可能的傳熱速率的比值。由于有限的壓降下流動摩擦耗散表示為[ 16 ]</p><p><b> (4)</b></p><p> 在P1和P2指在冷、熱水壓力下降,分別為1和2;有其相應的密度。在無量綱形式導致</p><p><b> (5)</b></p&g
11、t;<p> 這是由于水流的摩擦耗散數(shù)。假設換熱器表現(xiàn)為一個接近理想的換熱器,然后(1-ε)要比團結[ 17 ]小。對于水-水換熱器在通常的操作條件下,熱水和冷水入口之間的溫差,ΔT=T1-T2,小于100 K,因此。因此,方程(5)可簡化為</p><p><b> (6)</b></p><p> 因此,整體的耗散數(shù)變?yōu)?lt;/p>
12、<p><b> ?。?)</b></p><p> 對于一個典型的水平衡的換熱器,傳熱單元數(shù)NTU可以推出,接近無窮大的效力趨于統(tǒng)一,那么c=1有效[ 17 ]</p><p><b> ?。?)</b></p><p><b> 在傳熱單元數(shù)定義為</b></p>&l
13、t;p> U在這里是總傳熱系數(shù),A是傳熱面積。假設固體壁的熱傳導阻力可以忽略,與對流換熱相比,那么它是適當?shù)膶α鲹Q熱系數(shù)H.因此取代U。</p><p><b> ?。?a)</b></p><p> 或者 (9b)</p><p> 在H1和H2的熱、冷流體,對流換熱系數(shù)
14、是。在近乎理想的換熱器的限制,Ntu遠大于1,即[ 17 ]</p><p><b> ?。?0)</b></p><p> 從式(7)整體耗散數(shù)表示為</p><p><b> ?。?1)</b></p><p> 公式右邊的兩個術語(11)對應于傳熱表面兩側的火積耗散。每側,耗散數(shù)可以表示如
15、下</p><p><b> (12)</b></p><p> 很明顯,耗散熱傳導在有限溫差下,第二耗散流動摩擦壓降下是有限的。為簡單起見,我們使用E不是EI表示耗散數(shù)換熱器表面每一側。注意,在方程的推導過程中(2)和(4),沒有假設層流[14,16];因此,上述結果的層流和湍流流動是適用的。</p><p><b> 2參數(shù)
16、優(yōu)化</b></p><p> 從理論上講,換熱器的有效性增加時,在熱交換器降低不可逆耗散。由于耗散可以用來描述這些不可逆耗散[ 18,19 ],因此我們尋求管道長徑比與質量流速優(yōu)化最小耗散數(shù)E例如方程(12)。</p><p><b> 2.1最佳長寬比</b></p><p> 雖然在傳熱表面的一側耗散數(shù)的總和可以表示為熱
17、傳導的貢獻有限的溫度差和流動摩擦壓降下有限的情況下,這兩個因素對換熱器的不可逆性的影響是強耦合的熱交換器管居住在那邊幾何參數(shù)。因此,基于耗散最小化,可以得到換熱器的最佳管徑比等幾何參數(shù)優(yōu)化。</p><p> 回憶中的斯坦頓數(shù)St的定義St((Re)D,pr)和摩擦系數(shù)f((Re)D):</p><p><b> ?。?3)</b></p><p
18、><b> ?。?4)</b></p><p> 其中質量速度是G=m/a,L是流動路徑的長度和D是管道的水力直徑。引入無量綱的質量流速,,讓</p><p> 替代式。(13)和(14)代入式(12),我們得到</p><p><b> ?。?5)</b></p><p> 顯然,導管
19、的縱橫比4L/D有兩個方面對等式的右邊的作用相反例如(15)。因此,存在一個最佳的管道縱橫比減少積數(shù)。當雷諾茲數(shù)和質量速度是固定的,最大限度地減少耗散數(shù)導致以下表達式優(yōu)化:</p><p><b> ?。?6)</b></p><p><b> 相應的最小耗散數(shù)</b></p><p><b> (17)&l
20、t;/b></p><p> 從(16)和(17)可以發(fā)現(xiàn),最佳管道的縱橫比的降低和質量流速G增加,最小耗散數(shù)和無量綱質量速度成正比。注意,最小耗散數(shù)也依賴于雷諾茲數(shù)通過F和ST,的雷諾茲數(shù)的最小耗散數(shù)影響很弱,使許多傳熱表面的磨擦系數(shù)斯坦頓數(shù)的比例沒有顯著的變化隨著雷諾茲數(shù)的變化[17 ]。因此,最小耗散數(shù)主要由選定的無量綱質量流速確定。顯然,其質量速度較小,工作流體較長的存留在傳熱表面和熱交換器存在較
21、低的不可逆耗散。</p><p> 2.2固定換熱面積下的參數(shù)優(yōu)化</p><p> 在換熱器設計,換熱面積是一個重要的考慮因素時,它占了一個換熱器的總成本。因此在這一部分,我們討論的一個固定的傳熱面積和換熱器的優(yōu)化設計。</p><p> 從水力直徑的定義,一個側的傳熱面積是</p><p> AC是管道截面。這種表達可以放在無量綱
22、形式</p><p><b> ?。?8)</b></p><p> 其中一個是無量綱傳熱面積。替代式(18)代入式(15)的收益率</p><p><b> ?。?9)</b></p><p> 顯然,無量綱流速有相反的效果兩個方面對等,等式為(19);因此,存在一個最佳的無量綱流速使熵耗散數(shù)
23、達到最小值時,A和雷諾茲數(shù)(Re)D。求解該優(yōu)化問題的產(chǎn)生</p><p><b> ?。?0)</b></p><p><b> ?。?1)</b></p><p> 由上可得(20)和(21)給出最優(yōu)無量綱質量速度和最小耗散數(shù),分別在固定A和雷諾茲數(shù)(Re)D.從這兩方程,較大的傳熱面積明顯對應較小的質量速度和低的耗
24、散率。因此,需要減少不可逆耗散在熱交換器的傳熱面積,但是必須應在條件允許的情況下采用。</p><p> 假設E和(Re)D是該換熱器的最小傳熱面積</p><p><b> (22)</b></p><p> 和 (23)</p><p&
25、gt; 由(22)和(23)可得,我們可以看到一個低的耗散率對應于傳熱面積大或導管的縱橫比。得到(21)和(22)是相同的,提供的產(chǎn)品為在給定的雷諾茲數(shù)達到最小值的表達式。</p><p> 2.3參數(shù)優(yōu)化固定導管的體積</p><p> 在一些空間有限的情況下,如在海洋和航空航天應用,通過換熱器占用的空間,在換熱器設計的一個重要約束。因此,在這一部分,我們討論了換熱器的優(yōu)化設計固定
26、管體積下的約束</p><p> 管道體積V=LA可以寫為</p><p><b> ?。?4)</b></p><p> 其中V是無量綱的體積,是運動粘度。替代式(24)代入式(15)整理所得的方程,我們得到</p><p><b> ?。?5)</b></p><p>
27、; 類似于公式(19),無量綱流速有兩個方面相反的效果對等式(25)。因此,存在一個最佳的無量綱流速允許耗散數(shù)達到最小值時,V和雷諾茲數(shù)(Re)D。求解該優(yōu)化問題的產(chǎn)生</p><p><b> (26)</b></p><p><b> ?。?7)</b></p><p> 由上(26)和(27)公式的最優(yōu)無量綱質
28、量速度和最小耗散數(shù),分別在固定V和雷諾茲數(shù)(Re)D.由上(26)和(27)可以看到,管體最大可能導致最低的耗散率和最小質量流速。顯然,限制管的體積限制是最可能限制最小耗散率的。</p><p> 當E和(Re)D是固定的,最小管體積</p><p><b> ?。?8)</b></p><p> 由上(27)和(28)是等價的,產(chǎn)量為產(chǎn)品
29、固定雷諾茲數(shù)下的最小可能值的表達式。</p><p><b> 3結語</b></p><p> 由水逆流換熱器為例,目前的工作表明,熱交換器的最佳管道縱橫比所決定的雷諾茲數(shù)和流速下,當耗散數(shù)作為性能評價標準,分析得到了最優(yōu)的管道縱橫比的公式。固定的傳熱面積的限制下(或管體積)和雷諾茲數(shù),它表明,存在一個最佳的無量綱流速的解析表達式;并給出了結果,如果采用降低換熱
30、器的不可逆耗散,最大可能的傳熱面積和最低的質量速度。這一結論如果是由殼體和耗散數(shù)為目標函數(shù)[20],則可得到管式換熱器優(yōu)化設計得到的數(shù)值結果相吻合。</p><p> 從本研究中得到的結果,可以看出,傳統(tǒng)換熱器的設計優(yōu)化,以總費用為目標函數(shù)通常犧牲換熱器換熱性能。此問題已通過數(shù)值結果表明[ 11 ]。在本文中[ 11 ]的分析可以看到,換熱器性能的一個小的改進可以導致在節(jié)能和環(huán)保方面大的收益。因此,在換熱器設計
31、中,在總成本和換熱性能的提高應同等對待。推動這個方向的新研究是非常很有用。</p><p><b> 參考文獻</b></p><p> 1 Selbas R, Kizilkan O, Reppich M. A new design approach for shell-and-tube heat exchangers using genetic algorith
32、ms from economicpoint of view. Chem Eng Process, 2006, 45: 268–275</p><p> 2 Wildi -Tremblay P, Gosselin L. Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance.
33、 Int J Energ Res, 2007, 31: 867–885</p><p> 3 Allen B, Gosselin L. Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube condensers. Int J Energ Res, 2008, 32: 958–969</p>&
34、lt;p> 4 Babu B V, Munawar S A. Differential evolution strategies for optimal design of shell-and-tube heat exchanger. Chem Eng Sci, 2007, 62: 3720–3739</p><p> 5 Caputo A C, Pelagagge P M, Salini P. Hea
35、t exchanger design based on economic optimisation. Appl Therm Eng, 2008, 28: 1151–1159</p><p> 6 Yilmaz M, Sara O N, Karsli S. Performance evaluation criteria for heat exchangers based on second law analysi
36、s. Exergy Int J, 2001, 1: 278–294</p><p> 7 Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79:1191–1218</p><
37、p> 8 Bejan A. Entropy Generation Minimization. New York: CRC Press, 1995</p><p> 9 Guo J F, Cheng L, Xu M T. Optimization design of shell-and-tube heat exchanger by entropy generation minimization and g
38、enetic algorithm. Appl Therm Eng, 2009, 29: 2954–2960</p><p> 10 Guo J F, Cheng L, Xu M T. The entropy generation minimization based on the revised entropy generation number. Int J Exergy, 2010, 7: 607–629&
39、lt;/p><p> 11 Guo J F, Xu M T, Cheng L. The application of field synergy number in shell-and-tube heat exchanger optimization design. Appl Energ, 2009, 86: 2079–2087</p><p> 12 Guo J F, Cheng L,
40、Xu M T. Entransy dissipation number and its application to heat exchanger performance evaluation. Chinese Sci Bull, 2009, 54: 2708–2713</p><p> 13 Guo Z Y, Zhu H Y, Liang X G. Entransy-A physical quantity d
41、escribing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556</p><p> 14 Guo Z Y, Liu X B, Tao W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. In
42、t J Heat Mass Transfer, 2010, 53: 2877–2884</p><p> 15 Chen L G, Wei S H, Sun F R. Constructal entransy dissipation minimization for ‘volume-point’ heat conduction. J Phys D: Appl Phys, 2008, 41: 195506<
43、/p><p> 16 Xu M T, Chen L, Guo J F. An application of entransy dissipation theory to heat exchanger design (in Chinese). J Eng Thermophys, 2009, 30: 2090–2092</p><p> 17 Bejan A. Entropy Generati
44、on Through Heat and Fluid Flow. New York: John Wiley & Sons, 1982 18 Wang S P, Chen Q L, Zhang B J. An equation of entransy transfer and its application. Chinese Sci Bull, 2009, 54: 3572–3578</p><p> 19
45、 Han G Z, Guo Z Y. Physical mechanism of heat conduction ability dissipation and its analytical expression (in Chinese). Proc CSEE, 2007, 27: 98–102</p><p> 20 Guo J F, Li M X, Xu M T, et al. The applicatio
46、n of entransy dissipation theory in optimization design of heat exchanger. In: Proceedings of the 14th International Heat Transfer Conference, Washington, 2010</p><p> Entransy dissipation minimization for
47、optimization of heatexchanger design</p><p> LI XueFang, GUO JiangFeng, XU MingTian& CHENG LinInstitute of Thermal Science and Technology, Shandong University, Jinan 250061, ChinaReceived July 16, 2010;
48、 accepted March 15, 2011</p><p> In this paper, by taking the water-water balanced counterflow heat exchanger as an example, the entransy dissipation theory isapplied to optimizing the design of heat exchan
49、gers. Under certain conditions, the optimal duct aspect ratio is determined analytically.When the heat transfer area or the duct volume is fixed, analytical expressions of the optimal mass velocity and the minimalentrans
50、y dissipation rate are obtained. These results show that to reduce the irreversible dissipation in heat exc</p><p> entransy, heat exchanger, optimization design</p><p> As fossil fuels are gr
51、adually depleted, fuel prices will surelyrise. As a result, energy shortages are foreseen as a detrimentalfactor that could restrict economic and social development.Improving energy use efficiency is one of the mosteffec
52、tive ways to address an energy crisis. Heat exchangersare widely applied in the chemical industries, petroleumrefineries, power engineering, food industries, and manyother areas. Therefore, it will be of great value to r
53、educeneedless energy dissipation and i</p><p> The objectives in heat exchanger design optimization canbe classified into two groups: one is minimizing costs ofheat exchangers [1–5]; the other is minimizing
54、 irreversibilitybased on the second law of thermodynamics that occursin heat exchangers [6–10]. The first approach can reducecosts, but possibly at the expense of sacrificing heat exchangerperformance [11]. As representa
55、tive of the secondapproach, entropy generation minimization suffers fromso-called “entropy generation paradox” [8,12].</p><p> By analogy with electrical conduction, Guo et al. defineda new physical concept
56、, entransy, which describes heattransfer capability [13]. Based on this concept, the equivalentthermal resistance of a heat exchanger was defined toquantify heat transfer irreversibility in heat exchangers[14].Chen et al
57、. applied entransy dissipation theory to thevolume-to-pointconduction problem[15]. Guo et al. defined anentransy dissipation number to evaluate heatexchangerperformance that not only avoids the “entrop</p><p&g
58、t; The present work, based on expressions of entransy dissipationfrom heat conduction under finite temperature differencesand flow friction under finite pressure drops [14,16], and on the dimensionless method proposed b
59、y Guo etal. [12], defines an overall entransy dissipation numbers.The minimum overall entransy dissipation number is thentaken as an objective function. Under certain assumptionswe attempt to prove that since the variati
60、on in the duct aspectratio or mass velocity has opposing effects</p><p> 1 Entransy dissipation number</p><p> The entransy is defined as one-half the product of heat capacity and temperature
61、[13]:</p><p><b> (1)</b></p><p> where T is the temperature, Qvh is the heat capacity at constant volume, and cp is the specific heat at constant pressure.Now, using the water-wate
62、r balanced counter-flow heatexchanger as an example, we attempt to discuss the entransydissipation in heat exchangers.</p><p> Assume that both the hot and cold fluids are incompressible.The inlet temperatu
63、re and pressure of the hot andcold fluids are denoted as T1, P1 and T2, P2, respectively.Similarly the outlet temperature and pressure are T1,out, P1,outand T2,out, P2,out. For the balanced heat exchanger, the heatcapaci
64、ty rate ratio satisfies condition(where m is the mass flow rate). For the one-dimensionalheat exchanger considered in the present work, the usualassumptions such as steady flow, no heat exchange withen</p><p&g
65、t; In the heat exchanger, there mainly exist two kinds of irreversibility:the first is heat conduction under finite temperaturedifferences and the second is flow friction under finite pressure drops. The entransy dissip
66、ation rate caused by heat conduction under a finite temperature difference iswritten as [14]</p><p><b> (2)</b></p><p> The corresponding entransy dissipation number is defined as
67、[12]</p><p><b> (3)</b></p><p> where Q is the heat transfer rate, is the heat exchangereffectiveness which is defined as the ratio of the actual heattransfer rate to the maximum p
68、ossible heat transfer rate. The entransy dissipation due to flow friction under a finite pressuredrop is expressed as [16]</p><p><b> (4)</b></p><p> where P1 and P2 refer to the p
69、ressure drops in the hot and cold water, respectively; 1 and 2 are their corresponding densities. Putting in dimensionless form leads to</p><p><b> (5)</b></p><p> which is called
70、the entransy dissipation number due to flow friction. Assuming that the heat exchanger behaves as a nearly ideal heat exchanger, then (1-ε) is considerably smaller than unity [17]. For a water-water heat exchanger under
71、usual operating conditions, the inlet temperature difference between hot and cold water,ΔT=T1-T2,小于100 K, is less than 100 K,hence There fore, eq. (5) can be simplified to</p><p><b> (6)</b><
72、/p><p> Accordingly, the overall entransy dissipation number becomes</p><p><b> (7)</b></p><p> For a typical water-water balanced heat exchanger, the number of heat tra
73、nsfer units Ntu can be introduced, which approaches infinity as the effectiveness tends to unity. Since c=1, the effectiveness is [17]</p><p><b> (8)</b></p><p> where the number o
74、f heat transfer units is defined as</p><p> Here U is the overall heat transfer coefficient, and A is the heat transfer area. Assuming that the heat conduction resistance of the solid wall can be neglected,
75、 compared with the convective heat transfer, then it is appropriate to replace U with the convective heat transfer coefficient h. Therefore</p><p><b> (9a)</b></p><p> or
76、 (9b)</p><p> where h1 and h2 are the convective heat transfer coefficients of the hot and cold fluids, respectively, andNtu hA mc i i ii . In the nearly ideal heat exchangerlimit, Ntu>1,
77、 that is [17]</p><p><b> (10)</b></p><p> from eq. (7) the overall entransy dissipation number is expressed as</p><p><b> (11)</b></p><p> T
78、he two terms on the right of eq. (11) correspond to the entransy dissipations of two sides of heat transfer surfaces. For each side, the entransy dissipation number can be expressed as follows:</p><p><b&
79、gt; (12)</b></p><p> It is evident that the first term accounts for the entransy dissipationfrom the heat conduction under finite temperaturedifference and the second for the entransy dissipation fro
80、m flow friction under finite pressure drop. For simplicity, we now use E instead of Ei to denote the entransy dissipation number for each side of the heat exchanger surface. Note that in the derivations of eqs. (2) and (
81、4), there is no assumption that the flow is laminar [14,16]; therefore, the above results are applicab</p><p> 2 Parameter optimization</p><p> Theoretically, the exchanger effectiveness incre
82、ases when the irreversible dissipation in the heat exchanger decreases. Since the entransy dissipation can be used to describe these irreversible dissipations [18,19], therefore we seek optimums in duct aspect ratio and
83、mass velocity by minimizing the entransy dissipation number E based on eq. (12).</p><p> 2.1 The optimum aspect ratio</p><p> Although the entransy dissipation number on one side of a heat tr
84、ansfer surface can be expressed as the sum of the contributions of the heat conduction under the finite temperature difference and flow friction under the finite pressure drop, the effects of these two factors on heat ex
85、changer irreversibility are strongly coupled through the geometric parameters of the heat exchanger tube residing on that side. Therefore, based on entransy dissipation minimization, it is possible to obtain optimal</
86、p><p> Recall the definition of the Stanton number St((Re)D,Pr) and friction factor f((Re)D):</p><p><b> (13)</b></p><p><b> (14)</b></p><p> w
87、here G=m/a is the mass velocity, L is the flow path length and D is the duct hydraulic diameter. Introducing the dimensionless mass velocity, , letting</p><p> and substituting eqs. (13) and (14) into eq. (
88、12), we obtain</p><p><b> (15)</b></p><p> Clearly, the duct aspect ratio 4L/D has opposing effects onthe two terms of the right side of eq. (15). Therefore, there exists an optima
89、l duct aspect ratio to minimize the entransynumber. When the Reynolds number and mass velocity are fixed, minimizing the entransy dissipation number leads to the following expression for this optimum:</p><p>
90、;<b> (16)</b></p><p> The corresponding minimum entransy dissipation number is</p><p><b> (17)</b></p><p> From eqs. (16) and (17), one can see that the
91、optimal duct aspect ratio decreases as the mass velocity G* increases, and the minimum entransy dissipation number is directly proportional to the dimensionless mass velocity. Note that the minimum entransy dissipation n
92、umber is also dependent on the Reynolds number via f and St. However, the impact of the Reynolds number on the minimum entransy dissipation number is very weak since for many heat transfer surfaces the ratio of the frict
93、ion factor to </p><p> 2.2 Parameter optimization under fixed heat transfer area</p><p> In designing a heat exchanger, the heat transfer area is anim portant consideration when it accounts fo
94、r most of the total cost of a heat exchanger. Thus in this subsection, we discuss design optimization of the heat exchanger with a fixed heat transfer area.</p><p> From the definition of the hydraulic diam
95、eter, the heattransfer area for one side is</p><p> where Ac is the duct cross-section. This expression can be put in dimensionless form as</p><p><b> (18)</b></p><p>
96、 where A is the dimensionless heat transfer areaSubstituting eq. (18) into eq. (15) yields</p><p><b> (19)</b></p><p> Obviously, the dimensionless mass velocity has an opposing e
97、ffect on the two terms of the right side of eq.(19); thus, there exists an optimal dimensionless mass velocity which allows the entropy dissipation number to reach a minimum value when A* and Reynolds number (Re)D are gi
98、ven. Solving this optimization problem yields</p><p><b> (20)</b></p><p><b> (21)</b></p><p> Eqs. (20) and (21) give the optimal dimensionless mass veloc
99、ity and the minimum entransy dissipation number, respectively, under fixed A* and Reynolds number (Re)D. From these two equations, the larger heat transfer area clearly corresponds to the smaller mass velocity and lower
100、entransy dissipation rates. Hence, to reduce the irreversible dissipation occurring in a heat exchanger, the largestpossible heat transfer area should be adopted under the allowable conditions.</p><p> If
101、E and (Re)D are given, the minimum heat transfer area is</p><p><b> (22)</b></p><p> Or (23)</p><p> From eqs. (22) and (23),
102、one can see that a low entransy dissipation rate corresponds to large heat transfer area or duct aspect ratio. Eqs. (21) and (22) are identical, providing an expression for the minimum attainable value for the productund
103、er the given Reynolds number.</p><p> 2.3 Parameter optimization under fixed duct volume</p><p> In some space-limited situations, such as in marine and aerospace applications, space occupied
104、by a heat exchanger is an important constraint on the heat exchanger design. Therefore, in this subsection, we discuss design optimization of heat exchangers under the fixed duct volume constraint.</p><p>
105、The duct volume V=LA can be written as</p><p><b> (24)</b></p><p> where V* is the dimensionless volume,,is the kinematic viscosity. Substituting eq. (24) into eq. (15) and rearran
106、ging the resulting equation, we obtain</p><p><b> (25)</b></p><p> Similar to eq. (19), the dimensionless mass velocity has an opposing effect on the two terms of the right side of
107、 Eq. (25). Therefore, there exists an optimal dimensionless mass velocity that allows the entransy dissipation number to obtain a minimum value when V* and Reynolds number (Re)D are given. Solving this optimization probl
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 積耗散最小換熱器的優(yōu)化設計外文翻譯
- 火積耗散理論在管殼式換熱器優(yōu)化設計中的應用.pdf
- 火積耗散理論在板翅式換熱器多目標優(yōu)化設計中的應用.pdf
- 外文翻譯---換熱器的優(yōu)化選型
- 外文及翻譯---換熱器的優(yōu)化選型
- 換熱器外文翻譯
- 機械設計外文翻譯--新型板式換熱器的優(yōu)化選型
- 機械設計外文翻譯--新型板式換熱器的優(yōu)化選型
- 機械設計外文翻譯--新型板式換熱器的優(yōu)化選型
- 浮頭式換熱器(ⅱ型)設計外文翻譯
- 機械設計外文翻譯--新型板式換熱器的優(yōu)化選型.doc
- 機械設計外文翻譯--新型板式換熱器的優(yōu)化選型.doc
- 換熱器畢業(yè)設計(含外文翻譯)
- 浮頭式換熱器設計(含外文翻譯)
- 過程裝備與控制工程外文翻譯---換熱器的優(yōu)化選型
- 換熱器外文翻譯文獻
- 板式換熱器畢業(yè)設計外文翻譯
- 基于火積耗散極值原理的葉形肋片構形優(yōu)化.pdf
- 浮頭式換熱器外文翻譯
- 外文翻譯---移動清潔換熱器
評論
0/150
提交評論