版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1FacebookAIResearch770BroadwayNewYkNewYk10003USA.2NewYkUniversity715BroadwayNewYkNewYk10003USA.3DepartmentofComputerScienceOperationsResearchUniversitdeMontralPavillonrAisenstadtPOBox6128CentreVilleSTNMontralQuebecH3C3J7
2、Canada.4Google1600AmphitheatreParkwayMountainViewCalifnia94043USA.5DepartmentofComputerScienceUniversityofTonto6King’sCollegeRoadTontoOntarioM5S3G4Canada.Machinelearningtechnologypowersmanyaspectsofmodernsociety:fromwebs
3、earchestocontentfilteringonsocialwkstorecommendationsonecommercewebsitesitisincreasinglypresentinconsumerproductssuchascamerassmartphones.Machinelearningsystemsareusedtoidentifyobjectsinimagestranscribespeechintotextmatc
4、hnewsitemspostsproductswithusers’interestsrelevantresultsofsearch.Increasinglytheseapplicationsmakeuseofaclassoftechniquescalleddeeplearning.Conventionalmachinelearningtechniqueswerelimitedintheirabilitytoprocessnaturald
5、ataintheirrawfm.Fdecadesconstructingapatternrecognitionmachinelearningsystemrequiredcarefulengineeringconsiderabledomainexpertisetodesignafeatureextractthattransfmedtherawdata(suchasthepixelvaluesofanimage)intoasuitablei
6、nternalrepresentationfeaturevectfromwhichthelearningsubsystemoftenaclassifiercoulddetectclassifypatternsintheinput.Representationlearningisasetofmethodsthatallowsamachinetobefedwithrawdatatoautomaticallydiscovertherepres
7、entationsneededfdetectionclassification.Deeplearningmethodsarerepresentationlearningmethodswithmultiplelevelsofrepresentationobtainedbycomposingsimplebutnonlinearmodulesthateachtransfmtherepresentationatonelevel(starting
8、withtherawinput)intoarepresentationatahigherslightlymeabstractlevel.Withthecompositionofenoughsuchtransfmationsverycomplexfunctionscanbelearned.Fclassificationtaskshigherlayersofrepresentationamplifyaspectsoftheinputthat
9、areimptantfdiscriminationsuppressirrelevantvariations.Animagefexamplecomesinthefmofanarrayofpixelvaluesthelearnedfeaturesinthefirstlayerofrepresentationtypicallyrepresentthepresenceabsenceofedgesatparticularientationsloc
10、ationsintheimage.Thesecondlayertypicallydetectsmotifsbyspottingparticulararrangementsofedgesregardlessofsmallvariationsintheedgepositions.Thethirdlayermayassemblemotifsintolargercombinationsthatcrespondtopartsoffamiliaro
11、bjectssubsequentlayerswoulddetectobjectsascombinationsoftheseparts.Thekeyaspectofdeeplearningisthattheselayersoffeaturesarenotdesignedbyhumanengineers:theyarelearnedfromdatausingageneralpurposelearningprocedure.Deeplearn
12、ingismakingmajadvancesinsolvingproblemsthathaveresistedthebestattemptsoftheartificialintelligencecommunityfmanyyears.Ithasturnedouttobeverygoodatdiscoveringintricatestructuresinhighdimensionaldataistherefeapplicabletoman
13、ydomainsofsciencebusinessgovernment.Inadditiontobeatingrecdsinimagerecognition1–4speechrecognition5–7ithasbeatenothermachinelearningtechniquesatpredictingtheactivityofpotentialdrugmolecules8analysingparticleacceleratdata
14、910reconstructingbraincircuits11predictingtheeffectsofmutationsinnoncodingDNAongeneexpressiondisease1213.Perhapsmesurprisinglydeeplearninghasproducedextremelypromisingresultsfvarioustasksinnaturallanguageundersting14part
15、icularlytopicclassificationsentimentanalysisquestionanswering15languagetranslation1617.Wethinkthatdeeplearningwillhavemanymesuccessesinthenearfuturebecauseitrequiresverylittleengineeringbyhsoitcaneasilytakeadvantageofinc
16、reasesintheamountofavailablecomputationdata.Newlearningalgithmsarchitecturesthatarecurrentlybeingdevelopedfdeepneuralwkswillonlyacceleratethisprogress.SupervisedlearningThemostcommonfmofmachinelearningdeepnotissupervised
17、learning.Imaginethatwewanttobuildasystemthatcanclassifyimagesascontainingsayahouseacarapersonapet.Wefirstcollectalargedatasetofimagesofhousescarspeoplepetseachlabelledwithitscategy.Duringtrainingthemachineisshownanimagep
18、roducesanoutputinthefmofavectofscesonefeachcategy.Wewantthedesiredcategytohavethehighestsceofallcategiesbutthisisunlikelytohappenbefetraining.Wecomputeanobjectivefunctionthatmeasurestheerr(distance)betweentheoutputscesth
19、edesiredpatternofsces.Themachinethenmodifiesitsinternaladjustableparameterstoreducethiserr.Theseadjustableparametersoftencalledweightsarerealnumbersthatcanbeseenas‘knobs’thatdefinetheinput–outputfunctionofthemachine.Inat
20、ypicaldeeplearningsystemtheremaybehundredsofmillionsoftheseadjustableweightshundredsofmillionsoflabelledexampleswithwhichtotrainthemachine.Toproperlyadjusttheweightvectthelearningalgithmcomputesagradientvectthatfeachweig
21、htindicatesbywhatamounttheerrwouldincreasedecreaseiftheweightwereincreasedbyatinyamount.Theweightvectisthenadjustedintheoppositedirectiontothegradientvect.TheobjectivefunctionaveragedoverallthetrainingexamplescanDeeplear
22、ningallowscomputationalmodelsthatarecomposedofmultipleprocessinglayerstolearnrepresentationsofdatawithmultiplelevelsofabstraction.Thesemethodshavedramaticallyimprovedthestateoftheartinspeechrecognitionvisualobjectrecogni
23、tionobjectdetectionmanyotherdomainssuchasdrugdiscoverygenomics.Deeplearningdiscoversintricatestructureinlargedatasetsbyusingthebackpropagationalgithmtoindicatehowamachineshouldchangeitsinternalparametersthatareusedtocomp
24、utetherepresentationineachlayerfromtherepresentationinthepreviouslayer.Deepconvolutionalshavebroughtaboutbreakthroughsinprocessingimagesvideospeechaudiowhereasrecurrentshaveshonelightonsequentialdatasuchastextspeech.Deep
25、learningYannLeCun12YoshuaBengio3RGB(redgreenblue)inputsbottomright).Eachrectangularimageisafeaturemapcrespondingtotheoutputfoneofthelearnedfeaturesdetectedateachoftheimagepositions.Infmationflowsbottomupwithlowerlevelfea
26、turesactingasientededgedetectsasceiscomputedfeachimageclassinoutput.ReLUrectifiedlinearunit.RedGreenBlueSamoyed(16)Papillon(5.7)Pomeranian(2.7)Arcticfox(1.0)Eskimodog(0.6)whitewolf(0.4)Siberianhusky(0.4)ConvolutionsReLUM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機器學習(deep learning)牛人geoff hinton學生20
- deep learning學習筆記整理系列
- real analysis and foundations(steven g. krantz)
- neural networks and deep learning_ a textbook(2018)
- g.鍍層外觀檢驗之標準共識
- deep reinforcement learning hands-on - apply modern rl methods, with deep q-netw
- 語用學原理 principles of pragmatics g. leech 1983]
- Shallow and Deep Learning for Robust Online Object Tracking.pdf
- big data analysis and deep learning applications - proceedings of the first inte
- 關于不定方程2χ(χ+1)(χ+2)(χ+3)=5y(y+1)(y+2)(y+3).pdf
- paddlepaddle- towards a deep learning compiler for the cloud-于洋-
- 編號y
- 2015個人理財y-終結性考核
- evolutionary approach to machine learning and deep neural networks - neuro-evolu
- gōngjī公雞yāzi鴨子kǒngquè孔雀
- Y絲杠.dwg
- Y絲杠.dwg
- y.doc
- y.gif
- Y絲杠.dwg
評論
0/150
提交評論