版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、外文資料SURVEY OF IMAGE DENOISING TECHNIQUESMurkesh C. Motwani Image Process Technology, Inc. 1776 Back Country Road Reno, NV 89521 USA (775) 448-7816 mukesh@image-process.comMurkesh C. Gadiya University of Pune, India V
2、ishwakarma Inst. of Tech. Pune 411337, INDIA 91-9884371488 mukesh_gadiya@satyam.comRakhi C. Motwani University of Nevada, Reno Dept of Comp. Sci. & Engr.Reno, NV 89557 USA (775) 853-7897Frederick C. Harris, Jr.Univ
3、ersity of Nevada, Reno Dept of Comp. Sci. & Engr.,Reno, NV 89557 USA (775) 784-6571AbstractRemoving noise from the original signal is still a challenging problem for researchers. There have been several published
4、algorithms and each approach has its assumptions, advantages, and limitations. This paper presents a review of some significant work in the area of image de-noising. After a brief introduction, some popular approaches ar
5、e classified into different groups and an overview of various algorithms and analysis is provided. Insights and potential future trends in the area of de-noising are also discussed.1. IntroductionDigital images play an i
6、mportant role both in daily life applications such as satellite television, magnetic resonance imaging, computer tomography as well as in areas of research and technology such as geographical information systems and astr
7、onomy. Data sets collected by image sensors are generally contaminated by noise. Imperfect instruments, problems with the data acquisition process, and interfering natural phenomena can all degrade the data of interest.
8、Furthermore, noise can be introduced by transmission errors and compression. Thus, de-noising is often a necessary and the first step to be taken before the images data is analyzed. It is necessary to apply an efficient
9、de-noising technique to compensate for such data corruption.Image de-noising still remains a challenge for researchers because noise removal introduces artifacts and causes blurring of the images. This paper describes di
10、fferent methodologies for noise reduction (or de-noising) giving an insight as to which statistical properties of the wavelet coefficients and its neighbors. Future trend will be towards finding more accurate probabilist
11、ic models for the distribution of non-orthogonal wavelet coefficients.3. Classification of De-noising AlgorithmsAs shown in Figure 1, there are two basic approaches to image de-noising, spatial filtering methods and tran
12、sform domain filtering methods.3.1 Spatial FilteringA traditional way to remove noise from image data is to employ spatial filters. Spatial filters can be further classified into non-linear and linear filters.I. Non-Line
13、ar FiltersWith non-linear filters, the noise is removed without any attempts to explicitly identify it. Spatial filters employ a low pass filtering on groups of pixels with the assumption that the noise occupies the high
14、er region of frequency spectrum. Generally spatial filters remove noise to a reasonable extent but at the cost of blurring images which in turn makes the edges in pictures invisible. In recent years, a variety of nonline
15、ar median- type filters such as weighted median, rank conditioned rank selection, and relaxed median have been developed to overcome this drawback.II. Linear FiltersA mean filter is the optimal linear filter for Gaussian
16、 noise in the sense of mean square error. Linear filters too tend to blur sharp edges, destroy lines and other fine image details, and perform poorly in the presence of signal-dependent noise. The wiener filtering method
17、 requires the information about the spectra of the noise and the original signal and it works well only if the underlying signal is smooth. Wiener method implements spatial smoothing and its model complexity control corr
18、espond to choosing the window size. To overcome the weakness of the Wiener filtering, Donoho and Johnstone proposed the wavelet based denoising scheme in.3.2 Transform Domain FilteringThe transform domain filtering metho
19、ds can be subdivided according to the choice of the basis functions. The basis functions can be further classified as data adaptive and non-adaptive. Non-adaptive transforms are discussed first since they are more popul
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---圖像去噪技術(shù)研究
- 外文翻譯---圖像去噪技術(shù)研究
- 外文翻譯---圖像去噪技術(shù)研究(英文)
- 外文翻譯---圖像去噪技術(shù)研究.docx
- 外文翻譯---圖像去噪技術(shù)研究.docx
- 外文翻譯---圖像去噪技術(shù)研究.docx
- 外文翻譯---圖像去噪技術(shù)研究.docx
- 圖像壓縮解壓外文翻譯---復(fù)雜脊波圖像去噪
- 紅外圖像去噪研究
- 聲納圖像去噪與分割技術(shù)研究.pdf
- 基于盲分離的圖像去噪技術(shù)研究.pdf
- 人臉識(shí)別中的圖像去噪技術(shù)研究.pdf
- 模糊圖像去噪技術(shù)的研究與實(shí)現(xiàn)
- Android系統(tǒng)手機(jī)圖像去噪技術(shù)研究與實(shí)現(xiàn).pdf
- matlab畢業(yè)設(shè)計(jì)外文翻譯--復(fù)雜脊波圖像去噪
- 圖像去噪處理畢業(yè)論文----圖像去噪處理的研究及matlab仿真
- SAR圖像去噪方法研究.pdf
- 圖像去噪方法的研究.pdf
- CBCT圖像去噪的研究.pdf
- DTI圖像去噪方法研究.pdf
評(píng)論
0/150
提交評(píng)論