On Lie Triple Systems.pdf_第1頁
已閱讀1頁,還剩55頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、In this report, we shall give a structure theory of Lie triple systems in the first part as a collection of the work have been done including the relation between Lie triple systems and Lie algebras(Jordan algebras), so

2、me results on the solvable, the nilpotent and the semi-simple. Invariant bilinear forms will be also concerned. The second part we shall mainly connect Lie triple systems with some other algebras and then try to find mor

3、e new results on Lie triple systems. W.G. Lister proved that a semi-simple Lie triple system can decomposed into direct sum of simple Lie triple systems with the tool of standard imbedding Lie algebra and gave the uniqu

4、eness of the decomposition. In the first section of this part we shall give the uniqueness of decomposition from Lie triple system's structure directly, and cover the result of the uniqueness of semi-simple Lie triple sy

5、stems. In section part we shall discuss some properties of the tensor product of a communicative associative algebra and a Lie triple system, and then construct some finite dimensional Lie triple systems from Laurent-po

6、lynomial algebra and Novikov algebra. L. J. Santharouabane gave the definition of nilpotent Lie algebras of maximal rank and have shown some relationships between Kac-Moody algebras and such special kind of nilpotent Li

7、e algebras as follows. For any nilpotent Lie algebra g of maximal rank and of type l ,with a minimal system of generators X = {e1, e2,… el}, there exists an l × l generalized Cartan matrix A =(aij) whose equivalence cl

8、ass is an invariant of g such that (adei)-aijej ≠ 0, (adei)-aij+1ej = 0. Therefore, from the Kac-Moody algebra g(A) associated to A, a special kind of nilpotent Lie algebr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論