版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、華中科技大學(xué)碩士學(xué)位論文多譜遙感圖象分類(lèi)中的特征分析和評(píng)價(jià)姓名:吳凱申請(qǐng)學(xué)位級(jí)別:碩士專(zhuān)業(yè):模式識(shí)別與智能系統(tǒng)指導(dǎo)教師:曹治國(guó)20070606華華 中 科 技 大 學(xué) 碩 士 學(xué) 位 論 文 VAbstract Remote sensing technology has been developing rapidly after the first landsat sent into outer space. Scene classif
2、ication,one hotspots of remote sensing , becomes more and more important in the area of national defence and social development. However, having no systemic theoretics guiding how to choose appropriate features has becom
3、e one of the main limitations in accurate and automatic classification currently. It’s exigent to research choosing the effectual and eximious features with analysing the significance and classi- fication ability of feat
4、ure by multi-spectral or asynchronism remote sensing image. Using the multi-spectral (visible, medium Infrared Ray,long Infrared Ray)remote sensed image of a city in China and some of image which was shot by author,as th
5、e main data source,itemize the features used frequently which contain spectral feature alters rapidly following the change of climate or time and texture spectrum expresses the dime- nsional character of image lum. Clust
6、ering distribution of average gray has been analysed and assessed. And then the precision of classification with one-spectral and multi- spectral average gray also was analysed by nearest neight rule,a classical supervis
7、ed classification method.The resu- lts show that the gray information combined with visible and long Infrared Ray(IR) spectral gets the best classification,however long IR with medium IR spectral does the worst. For supe
8、rvised high-dimensional feature selection, the author presents a three-stage select model, firstly reduces remove the irrelevant and redundant features in the original set, while chooses the required number features at l
9、ast. The experi- mental results proved the method can drasti- cally reduce the dimension of selected feature set. There also has distinction of classific- ation in selected feature set, therefore a simple feature composi
10、tor is presented.For asse- ssing the capability of classification as the time changes, the author analysed the hourly results all-day using the above feature selected model. In addition, distributing curve has been drawi
11、ng according to the feature species. In the end, this paper concludes by summarizing the research and indicating its fiuture work. Key words: Remote sensing Scene classification Feature evaluation Feature selection
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 耦合“圖-譜”特征的遙感影像自動(dòng)分類(lèi)方法研究.pdf
- 基于模糊積分的多光譜遙感圖象分類(lèi)方法研究.pdf
- 基于小波分析與監(jiān)督分類(lèi)的多源遙感圖象信息融合.pdf
- 基于多尺度特征的遙感云圖分類(lèi).pdf
- 遙感圖象中的油庫(kù)識(shí)別.pdf
- 結(jié)合多特征描述和SVM的遙感影像分類(lèi)研究.pdf
- TM遙感圖象統(tǒng)計(jì)分類(lèi)方法研究.pdf
- 基于多特征融合的遙感圖像分類(lèi)研究.pdf
- 多譜遙感影像特征提取及協(xié)同解譯研究.pdf
- 基于小波分析的多光譜衛(wèi)星遙感圖象數(shù)據(jù)融合方法的研究.pdf
- 基于深度學(xué)習(xí)的多特征高光譜遙感圖像分類(lèi)研究.pdf
- 高光譜遙感影像空譜特征提取與分類(lèi)方法研究.pdf
- 礦區(qū)多源遙感數(shù)據(jù)組織與典型地物特征分類(lèi).pdf
- 多標(biāo)簽學(xué)習(xí)中特征選擇和分類(lèi)問(wèn)題的研究.pdf
- 邏輯回歸法在遙感數(shù)據(jù)特征選擇和分類(lèi)中的應(yīng)用
- 基于ENVI的遙感圖像特征分析及圖像分類(lèi).pdf
- 衛(wèi)星多源遙感圖象象素級(jí)融合技術(shù)研究.pdf
- 融合SIFT和Gabor特征的多源遙感圖自動(dòng)配準(zhǔn).pdf
- 基于特征庫(kù)和模糊技術(shù)的遙感圖像分類(lèi)研究.pdf
- SVM多類(lèi)分類(lèi)及其在遙感圖像中的應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論