半空間環(huán)境下復(fù)雜旋轉(zhuǎn)對(duì)稱體電磁散射特性的分析.pdf_第1頁
已閱讀1頁,還剩65頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、利用軸對(duì)稱性可以將電大的旋轉(zhuǎn)對(duì)稱體電磁問題轉(zhuǎn)化為求解每個(gè)具有小規(guī)模矩陣方程的問題,即原問題的Fourier模式,從而可以大大提高計(jì)算效率,并且減少內(nèi)存需求。本文發(fā)展了旋轉(zhuǎn)對(duì)稱體矩量法來快速有效地分析半空間環(huán)境下復(fù)雜旋轉(zhuǎn)對(duì)稱體的電磁散射特性。 本文研究了介質(zhì)旋轉(zhuǎn)對(duì)稱體在半空間環(huán)境下的散射問題。首先通過麥克斯韋方程、輔助位函數(shù)、等效原理和邊界條件建立了電、磁流的混合場(chǎng)積分方程(Poggio-Miller-Chang-Harringt

2、on-Wu,PMCHW);在外部等效積分中引入了并矢格林函數(shù),它的計(jì)算是通過離散復(fù)鏡像方法來實(shí)現(xiàn)的。然后再利用旋轉(zhuǎn)對(duì)稱性,將等效流(等效電流、磁流)展開為關(guān)于φ的傅立葉級(jí)數(shù)形式和關(guān)于t的分段函數(shù)形式。最后運(yùn)用矩量法求得每個(gè)Fourier模式矩陣方程的解。因?yàn)楦鞲盗⑷~模式之間存在正交性,可以分別計(jì)算單個(gè)獨(dú)立模式下的等效流,再進(jìn)行線性疊加,這樣就大大減少了未知量個(gè)數(shù)和計(jì)算時(shí)間。 本文還進(jìn)一步研究了含有均勻手征媒質(zhì)的旋轉(zhuǎn)對(duì)稱目標(biāo)在自由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論