2023年全國(guó)碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  畢 業(yè) 設(shè) 計(jì)(論 文)外 文 參 考 資 料 及 譯 文</p><p>  譯文題目: </p><p>  學(xué)生姓名: 學(xué)  號(hào): </p><p>  ?! I(yè):

2、 </p><p>  所在學(xué)院: </p><p>  指導(dǎo)教師: </p><p>  職  稱: </p><p>  年

3、 月 日</p><p>  Fundamentals of Composite Action and Shear Connection</p><p>  The evolution of satisfactory design methods for composite beams has been a slow process, requiring much theoretic

4、al and experimental work in order' to provide economic and, at the same time, safe design criteria. The purpose of this Chapter is to describe in some detail the more important fundamentals which have to be taken int

5、o account in the design of composite structures.</p><p>  Historically the first analysis of a composite section was based on the conventional assumptions of the elastic theory which limit the stresses in th

6、e component 'materials to a certain proportion of their 'failure stresses (yield in the case of steel, crushing in the case of concrete). The assumptions inherent in the elastic method are similar to those for or

7、dinary reinforced concrete. In recent' years the concepts of the ultimate load design philosophy have been applied to composite action and </p><p>  Before dealing in detail with the two design approache

8、s (elastic and ultimate load) basic points require consideration.</p><p>  A clear understanding of the way in which the component materials, steel concrete and shear connection react to applied load is an e

9、ssential preliminary to full analysis of the composite section. Of primary importance are the stress strains relationships, which must of necessity be the product of carefully controlled experiment. These experimental re

10、sults are not generally suited to direct application and so simplifications and idealisations are adopted in practice. The use of computers has made</p><p>  Composite action between steel and concrete impli

11、es some interconnection between the two materials which will transfer shear between them. In reinforced concrete members the natural bond of concrete to steel is often sufficient to do this, although cases do arise in wh

12、ich additional anchorage is required. The fully encased filler joist also has a large embedded area which is adequate for full shear transfer. However, the situation is quite different with the common type of composite b

13、eam in whic</p><p>  It has. been pointed out that the paradoxical situation exists that if shear connection is provided it may in fact not come into operation because the natural bond takes all the is provi

14、ded it may in fact not come into operation because the natural bond takes all the shear force, and so `if sufficient shear connectors are provided then they are unnecessary'.</p><p>  The evolution of sh

15、ear connection devices has been slow and has necessitated a large volume of experimental work on the static and fatigue properties of a wide range of mainly mechanical connectors.</p><p>  It soon appeared c

16、lear to early research workers that some form of connector fixed to the top flange of the beam and anchored into the slab was necessary. Caughey and Scott in 1929 proposed using, amongst other things, projecting bolt end

17、s. Since then a wide variety of types of mechanical connector has been used in experiment and practice. To some extent the proliferation of types has been .the result of steel fabricators using sections which came easily

18、 to hand, since initially a purpose-made s</p><p>  In any mechanical connection system it is possible to identify parts which transfer horizontal shear and parts which tie the slab down to the beam. General

19、ly, horizontal shear resistance is the ruling criterion of shear connector action and with this in mind mechanical connectors may be classified into three main groups-rigid, flexible and bond.</p><p>  Limit

20、 State Design of Brickwork</p><p>  The basic aim of structural design is to ensure that a structure should fulfill its intended function throughout its lifetime without excessive deflection, cracking or col

21、lapse, and this aim must of course be met with due regard to economy.The designer is assisted in his task by the availability of a code of practice which is based on accumulated experience and research. Up to the present

22、 time, such codes have sought to ensure the safety and serviceability of masonry structures by specifying per</p><p>  In recent years a more rational procedure has been evolved for dealing with structural s

23、afety and serviceability through consideration of the relevant "limit states“ . A structure, or part of a structure, reaches a limit state when it becomes incapable of fulfilling its function or when it no longer sa

24、tisfies the conditions for which it was designed. Two categories of limit state normally have to be considered, namely , ultimate limit states corresponding to failure or collapse and serviceabilit</p><p>  

25、The general method of applying the limit states approach to the design of structures is outlined in a publication of the International Organization for Standardization in which the criterion for a satisfactory design is

26、expressed in terms of design loading effects (S * )and design strengths (R * )as follows </p><p>  (1) </p><p&

27、gt;  Design loading effects are determined from the characteristic actions from the relationship</p><p>  S * = effects of () (2)

28、 </p><p>  where γf is a multiplier (or partial safety factor) and is a characteristic load which, if defined in statistical terms , is given by</p><p>  where is the value of the m

29、ost unfavourable load with a 50 per cent probability of its being exceeded once in the expected life of the structure δ is the standard deviation of the distribution of the .maximum loading k is a coefficient depefldin8

30、on a selected probability of maximum loadings being greater than </p><p>  It is usual to take the characteristic load as that which will have a 5 per cent probability of being exceeded during the lifetime o

31、f the structure.④In many situations, however,statistical data are not available and the characteristic loads have to be based on nominal values given in codes of practice or other regulations.The factorγf is a function o

32、f several</p><p>  partial coefficients.</p><p>  which takes account of the possibility of unfavourable deviation of the loads from the characteristic external loads ,thus allowing for abnormal

33、 or unforeseen actions</p><p>  which takes account of the reduced probability that various loads acting together will a11 be simultaneously at their characteristic values.</p><p>  which is int

34、ended to allow for possible modification of the load effects due to incorrect design assumptions (for example, introduction of simplified support conditions, hinges, neglect of thermal and other effects which are difficu

35、lt to assess) and constructional discrepancies such as dimensions of cross-section, deviation of columns from the vertical and accidental eccentricities.</p><p>  Similarly , design strengths of materials, R

36、* , are defined by</p><p><b>  R * ﹦</b></p><p>  where -- Rm-ks is the characteristic strength of the material</p><p>  Rm is the arithmetic mean of test results</p&

37、gt;<p>  s is the standard deviation </p><p>  k is a coefficient depending on the probability of obtaining results less than </p><p>  The characteristic strength of a material is usuall

38、y taken as the 95 per cent confidence limit of the material strength in a relevant test series. The reduction coefficient γm is</p><p>  a function of two coefficients</p><p>  which is intended

39、 to cover possible reductions in the strength of the materials in the structure as whole as compared to the characteristic value deduced from the control test specimen</p><p>  which is intended to cover po

40、ssible weakness of the structure arising from any cause other than the reduction in the strength of the materials allowed for by coefficient γm1, including manufacturing tolerances.</p><p>  Additionally , I

41、SO 2394 allows for the introduction of a further coefficient which may be applied either to the design values of loadings or material strengths. This coefficient is in turn a function of two partial coefficients</p>

42、;<p>  which is intended to take account of the nature of the structure and its behaviour , for example, structures or parts of structures in which partial or complete collapse can occur without warning, where red

43、istribution of internal forces is not possible, or where failure of a single element can lead to overall collapse</p><p>  which is intended to take account of the seriousness of attaining a limit state from

44、 other points of view, for example economic consequences,danger to the community , etc.</p><p>  Usually γc is incorporated into either γf or γm and therefore does not appear explicitly In design calculation

45、s.</p><p>  The advantage of the limit state approach is that permits a more rational and flexible assessment of structural safety and serviceability; the various relevant factors are identified and up to a

46、point can be expressed in numerical terms. ⑤Ideally ,loading and strengths should be available in statistical terms but this is seldom possible ,so that characteristic values have to be determined on the basis of availab

47、le evidence .In the case of loads ,the evidence generally results from surveys of bui</p><p>  組合作用的基礎(chǔ)及抗剪連接</p><p>  尋求組合梁的滿意設(shè)計(jì)方法是一個(gè)緩慢的過程。它需要許多理論和試驗(yàn)工作。以此來提供既經(jīng)濟(jì)又安全的設(shè)計(jì)準(zhǔn)則。這一樣的主要目的是詳細(xì)介紹一些在組合結(jié)構(gòu)設(shè)計(jì)中必須考

48、慮的重要基本概念。</p><p>  過去,組合截面的分析最先用的是基于彈性理論的傳統(tǒng)假設(shè)。該理論把材料的應(yīng)力限制在它們的破損應(yīng)力(剛才即為其屈服點(diǎn),混凝土為其壓碎應(yīng)力的某個(gè)比例)的一部分。這種在彈性理論中固有的假設(shè)和普通鋼筋混凝土中的假設(shè)十分相似。近年來,極限荷載設(shè)計(jì)理論已被應(yīng)用到組合結(jié)構(gòu)中,大量的試驗(yàn)證明,對(duì)于均稱的組合截面而言,此方法是安全、經(jīng)濟(jì)的。雖然目前極限荷載設(shè)計(jì)理論僅僅直接用于建筑結(jié)構(gòu),而還未用于

49、橋梁中,但不容懷疑,這種限制總有一天會(huì)消失的。</p><p>  在詳細(xì)敘述這2種設(shè)計(jì)方法(彈性方法和極限荷載方法)之前需要先介紹一些基本概念。</p><p>  清楚地了解組合梁中各部件:鋼梁、混凝土板及剪力連接鍵對(duì)外荷載作用的反應(yīng)是透徹分析組合截面的基礎(chǔ)。其中最重要的是應(yīng)力應(yīng)變關(guān)系曲線。而該曲線是必須精心試驗(yàn)的結(jié)果。這些試驗(yàn)結(jié)果并不能直接應(yīng)用。在實(shí)際工作,必須采用簡(jiǎn)化和理想化的曲線

50、。因此應(yīng)用計(jì)算機(jī)就有可能減少這些所要的假定。由于計(jì)算機(jī)“實(shí)驗(yàn)”可應(yīng)用復(fù)雜的多的材料應(yīng)力—應(yīng)變關(guān)系。</p><p>  鋼與混凝土間的組合作用是指在兩種材料間傳遞剪力的相互作用。在普通鋼筋混凝土構(gòu)建中雖然有時(shí)確有需要附加錨固的情況,但混凝土與鋼筋間的天然粘結(jié)力足以起到這種作用。完全埋置在混凝土內(nèi)的現(xiàn)澆肋梁有著較大的錨固面積,這足能傳遞剪力,然而,這完全不同于普通組合梁。在組合梁中,混凝土板置于鋼梁上翼緣之上或?qū)?/p>

51、梁的上翼緣完全包裹在混凝土板內(nèi)。最初在鋼梁和混凝土板解除面上確有粘結(jié)和摩擦力來傳遞一些剪力。但上面的混凝土板有和鋼梁上下分離的趨勢(shì),這樣就不能傳遞水平剪力.超載或振動(dòng)荷載引起的疲勞作用將破壞混凝土板與鋼梁間的天然粘結(jié)九這種粘結(jié)力一旦遭到破壞就不可恢復(fù)。這種不確定的抗剪連接效果顯然不符合要求,所以就需要有意在混凝土板和鋼梁間設(shè)一些連接鍵以傳遞水平剪力和避免二者分離.在抗剪連接中存在著天然粘結(jié)力,但不能依靠它,而且在任何情況下都要計(jì)算它的數(shù)

52、值也是不可能的。這樣就必須設(shè)置剪力連接鍵傳遞所有的水平剪力。</p><p>  這里應(yīng)指出一種矛盾現(xiàn)象:若設(shè)里了剪力連接鍵,天然瑞諾力會(huì)承擔(dān)全部的剪力而使設(shè)置的剪力連接鍵不起作用,所以,如果提供足夠的剪力連接鍵,又是不必要的。</p><p>  抗剪連接鍵的研究發(fā)展比較緩慢,它需廣泛地對(duì)大量機(jī)械式連接鍵進(jìn)行靜力和疲勞試驗(yàn)。</p><p>  早期的研究者很快就

53、清楚地發(fā)現(xiàn):有必要把某種連接鍵一端固定于鋼梁的上翼緣之上,另一端錨人混凝土板中。1929年Caughey和Scott在眾多的連接鍵形式中,提出用栓釘連接鍵.從此,各種機(jī)械式的抗剪連接鍵得到廣泛應(yīng)用。從某種程度上說,連接鍵形式的多</p><p>  樣化是由于鋼結(jié)構(gòu)制造商想使用容易找到的部件,因?yàn)樵谘芯砍跗谶€沒有專用抗剪這一目的而特制的剪力連接鍵。</p><p>  在任何一種機(jī)械式連接

54、體系中,它可以使傳遞水平剪力和避免使板和梁分開這兩個(gè)作用統(tǒng)一在一起。一般來說,水平抗剪作用是衡量抗剪連接鍵的標(biāo)準(zhǔn)。據(jù)此,機(jī)械式剪力連接鍵可以分為三大類,即剛性的,柔性的和粘結(jié)式的。</p><p>  砌體結(jié)構(gòu)的極限狀態(tài)設(shè)計(jì)法</p><p>  結(jié)構(gòu)設(shè)計(jì)的基本目的是保證其在使用期間不發(fā)生過大的變形、開裂或倒塌,完成預(yù)定的功能要求,當(dāng)然還要適當(dāng)考慮其經(jīng)濟(jì)性。設(shè)計(jì)者在其工作中可借助于靠積累的

55、經(jīng)驗(yàn)和科研成果形成的現(xiàn)行規(guī)范。到目前為止,這些規(guī)范通過規(guī)定各種材料及其組合體的允許應(yīng)力來摸索保證砌體結(jié)構(gòu)的安全性和適用性.因而,規(guī)范一般給出磚和砂漿組合范圍內(nèi)的基本抗壓應(yīng)力,在特定情況下基本應(yīng)力再根據(jù)砌體的長(zhǎng)細(xì)比和荷載的偏心程度予以調(diào)整?;緫?yīng)力根據(jù)墻體或墻垛的試驗(yàn)求得,而極限應(yīng)力則由足以避免在使用荷載作用下發(fā)生開裂的適當(dāng)?shù)陌踩禂?shù)求得。因此,從這種意義上講,砌體結(jié)構(gòu)設(shè)計(jì)總是與極限強(qiáng)度和正常使用極限狀態(tài)聯(lián)系在一起的。</p>

56、<p>  近年來,通過考慮相應(yīng)的“極限狀態(tài)”,即結(jié)構(gòu)或其一部分達(dá)到一種不鴿完成其功能的狀態(tài)或結(jié)構(gòu)不再滿足設(shè)計(jì)規(guī)定條件的狀態(tài),形成了一種解決結(jié)構(gòu)安全性和適用性的更合理的設(shè)計(jì)方法。通常要考慮兩類極限狀態(tài),即結(jié)構(gòu)將發(fā)生破壞或倒塌的承載力極限狀態(tài),及結(jié)構(gòu)將產(chǎn)生過大變形或裂縫的正常使用極限狀態(tài)。</p><p>  國(guó)際標(biāo)準(zhǔn)化組織出版的規(guī)范中對(duì)結(jié)構(gòu)的極限狀態(tài)設(shè)計(jì)方法作了概述,就是用設(shè)計(jì)荷載效應(yīng)(S*)和設(shè)計(jì)

57、強(qiáng)度(R*)給出了滿足設(shè)計(jì)準(zhǔn)則的表達(dá)式,即</p><p><b> ?。?)</b></p><p>  設(shè)計(jì)荷載效應(yīng)根據(jù)作用的特點(diǎn)由下式給出</p><p><b>  的效應(yīng)</b></p><p>  其中為擴(kuò)大系數(shù)(或分項(xiàng)安全系數(shù)),按統(tǒng)計(jì)學(xué)術(shù)語為特征荷載,由下式確定</p>

58、<p><b>  (2)</b></p><p>  式中 —是在結(jié)構(gòu)使用期內(nèi)具有50%失效概率的最不利荷載值;</p><p>  —是最大荷載分布的標(biāo)準(zhǔn)差,</p><p>  K —為最大荷載大于的概率系數(shù)。</p><p>  在結(jié)構(gòu)的使用期間,特征荷載的取值通常具有5%的失效概率,但在多種情況下,

59、由于統(tǒng)計(jì)資料不足,在實(shí)用規(guī)范或其他規(guī)程中,只給出其名義值。是一系列分項(xiàng)系數(shù)的函數(shù)。</p><p>  考慮了特征荷載可能不利的離散分布,亦即允許存在荷載變異或不可預(yù)見的荷載作用;</p><p>  考慮了各種荷載同時(shí)達(dá)到其特征值在概率上的可能性的降低;</p><p>  考慮了由于設(shè)計(jì)假設(shè)不正確(例如采用簡(jiǎn)化的支承條件、鉸、忽略溫差等其他難以估計(jì)的因素)和截面

60、尺寸、柱子傾斜及偶然偏心等施工誤差,用以對(duì)荷載效應(yīng)進(jìn)行可能的修正。</p><p>  與此類似,材料的設(shè)計(jì)強(qiáng)度R*定義為</p><p><b> ?。?)</b></p><p>  式中 — 是材料的特征強(qiáng)度;</p><p>  — 為材料強(qiáng)度試驗(yàn)結(jié)果的算術(shù)平均值;</p><p>&l

61、t;b>  S — 為標(biāo)準(zhǔn)差;</b></p><p>  k — 為試驗(yàn)結(jié)果低于的概率系數(shù)。</p><p>  材料的特征強(qiáng)度通常根據(jù)相應(yīng)的試驗(yàn)結(jié)界取為具有95%保證率的值。材料強(qiáng)度的降低系數(shù)是以下兩個(gè)系數(shù)的函數(shù)。</p><p>  用以考慮結(jié)構(gòu)中的材料與試件相比可能的強(qiáng)度降低;</p><p>  用以考慮由系數(shù)決定

62、的材料強(qiáng)度的降低外,包括制造誤差在內(nèi)的其他因素可能對(duì)結(jié)構(gòu)的削弱。</p><p>  另外,IS02394還允許采用另一個(gè)系數(shù),它可用以調(diào)整荷載或材料強(qiáng)度的設(shè)計(jì)值。該系數(shù)也是以下兩分項(xiàng)系數(shù)的函數(shù)。</p><p>  用以考慮結(jié)構(gòu)的特征和性能,例如結(jié)構(gòu)或結(jié)構(gòu)的一部分在沒有預(yù)兆時(shí)可能全部或部分倒塌,這種情況下不可能發(fā)生內(nèi)力重分布,或者說單個(gè)構(gòu)件破壞將導(dǎo)致整個(gè)結(jié)構(gòu)倒塌;</p>

63、<p>  用以從其他方面考慮結(jié)構(gòu)達(dá)到極限狀態(tài)后的嚴(yán)重程度,例如經(jīng)濟(jì)后果,對(duì)社會(huì)的危險(xiǎn)性等。</p><p>  通常將計(jì)入或中,因此它并不在設(shè)計(jì)計(jì)算中直接出現(xiàn)。</p><p>  極限狀態(tài)設(shè)計(jì)法的優(yōu)點(diǎn)是允許對(duì)結(jié)構(gòu)的安全性和適用性作出更合理和靈活的估計(jì),對(duì)各種有關(guān)的系數(shù)作了統(tǒng)一化處理,在一定程度上可用數(shù)值表示。理想情況是荷載和強(qiáng)度應(yīng)該由數(shù)理統(tǒng)計(jì)方法給出,但實(shí)際上這幾乎是不可能的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論