版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 附錄:</b></p><p><b> 外文資料和中文翻譯</b></p><p><b> 外文資料:</b></p><p> Testing of Tool Life Cost</p><p> Machining cost is
2、the sum of the machine tool cost and the cutter cost. The machine cost consists of idle cost, machining cost, and tool changing cost. The machining cost decreases with increased cutting speed; while the idle cost remains
3、 constant with changes in cutting speed. From the machining data handbook [24] the generalized machining cost equation is listed below:</p><p> In order to optimize the cutting condition, it is essential to
4、 determine the mathematical relationship between the cuttings inserts type and cutting speed. In our study Taylor's model will be used in relating the cutting tool life to the cutting speed:</p><p><b
5、> VT" =C </b></p><p> V= cutting speed</p><p> T= Cutting time to produce a standard amount of flank wear (e.g. 0.2mm) n and C are constants for the material or conditions used
6、.</p><p> In order to determine constants `n' and `C' for the cutting inserts under study in machining 4140 steel and the conditions used in the experiments, a LogV against LogT is drawn and shown f
7、or the three types of cutting inserts under study Figure 1, Figure 2are for KC313 under dry and wet conditions, Figure 3, and Figure 4are for KC732. In addition, Figure 6, and Figure 7are for KC5010. It can be seen from
8、the aforementioned figures that in-spite of considerable scatter in test measurements, the r</p><p> Metal cutting studies focused on tools' wear, tool life, and wear mechanisms. However, future researc
9、h should pay more attention to other factors as well:</p><p> Wear criterion value set up by the factory system, which basically the tool wear threshold value that suits the factory product.</p><
10、p> Types of tools used, such as carbide tips and high speed tools. Studying the variation of tool life wear under dry and wet cutting that effect the tool life equation constants (C,n) is useful. This will improve to
11、ol life because it also affects the economy of cutting [24].</p><p> In order to determine the effect of cutting fluid on the selected wear criterion, relationship between different wear criteria and machin
12、ing cost for the cutting inserts under HSM must be studied. The value of the tool life constants (C,n) for different wear criteria are extracted and plotted within the ranges listed in table (1). The values of the consta
13、nts (C, n) extracted from Figure 1/B, Figure 3IB, and Figure 3-10 are shown in tables1 and 2. Further explanation of the relationship between t</p><p> (a) Log (time) versus Log (speed) at different wear cr
14、iteria (dry condition).</p><p> (b) Log (time) versus Log (speed) at different wear criteria (wet condition)Figure </p><p> 2Time versus speed at different wear criteria KC313. (a) Log (time)
15、versus Log (speed) at different wear criteri(drycondition). (b) Log (time) versus Log (speed) at different wear criteria (wet condition).</p><p> Log (time) versus Log (speed) at different wear criteria (dr
16、y condition)</p><p> (b) Log (time) versus Log (speed) at different wear criteria (wet condition).</p><p> Figure 3Time versus speed at different wear criteria KC732 (a)Log (time) versus Log(s
17、peed) at different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition)</p><p> Log (time) versus Log (speed) at different wear criteria (dry condition
18、).</p><p> Log (time) versus Log (speed) at different wear criteria (wet condition)</p><p> Figure 3-10 Time versus speed at different wear criteria KC5010 (a) Log (time) versus Log(speed) at
19、different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition).</p><p> Table 1 Ranges of plotted tool life constants.</p><p> Table 2 We
20、ar Criteria versus `C' and `n' for three cutting inserts (Dry Condition).</p><p> Table 3Wear Criteria versus `C' and `n' for three cutting inserts (Wet Condition).</p><p> val
21、ues increase for both cutting conditions. In addition, `n' values for wet condition is lower than dry conditions up until wear criterion 0.38 after which `n' for wet starts to get bigger. Figure 5 shows `C' v
22、alues versus wear criterion, and reveals `C' increases as the wear criterion increases for both dry and wet cutting. However, `C' values under wet condition are getting higher than under dry conditions. This prov
23、es the increase in tool life by introducing coolant emulsion and by increasin</p><p> Next, Figure 6represents values of `n' with respect to wear criterion for KC732 material under dry and wet condition
24、s. As the wear criteria increase `n' values increase. Furthermore, wear curve is higher than dry curve. Figure7 presents a proportional relationship between constant `C' values and wear criterion. However, wet `C
25、' curve is higher than dry curves, which indicates the benefit of using coolant emulsion for material KC732. This benefit becomes more essential by increasing the wear crit</p><p> n values versus wear
26、criterion (wet and dry).</p><p> C values versus wear criterion (wet and dry).</p><p> Figure 11Taylor's constants for KC313 versus wear criteria,(a) n values versus wear criteria (wet and
27、 dry), (b) C values versus wear criteria (wet and dry).</p><p> n values versus wear criterion (wet and dry).</p><p> C values versus wear criterion (wet and dry).</p><p> Figure
28、 12Taylor's constants for KC732 versus wear criteria, (a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry).</p><p> n values versus wear criterion (wet and dr
29、y).</p><p> C values versus wear criterion (wet and dry)</p><p> Figure 13 Taylor's constants for KC5010 versus wear criteria, (a) n values versus wear criteria (wet and dry), (b) C values
30、 versus wear criteria (wet and dry).</p><p> Both conditions indicate as the wear criteria increases the machining cost decreases. Nonetheless, as the speed increases the cost reaches optimum value and then
31、 increases. Figure 14 and Figure 3-15B show economical comparison between dry and wet cutting at (0.4 and 0.6 mm) wear criterion. Optimum cutting speed for dry cutting is 90 m/min while 120 m/min is for wet cutting.</
32、p><p> Cost as a function of speed is presented in Figure15 and Figure 16 for sandwich coating (KC732) under dry and wet conditions. Again, as wear criteria increases, cost decreases. Furthermore, the optimum
33、 speed of 260 m/min of dry cutting, increased to 360 m/min in cases of wet cutting. This indicates the importance of coolant with this material not only decreases cost but also increases productivity.</p><p>
34、; Figure 3-17A and Figure 17 summarize the relationship of cost and speed for coated tools with TiALN (KC5010) under dry and wet cutting conditions. As the cutting speed increases the cost increases and as the wear crit
35、eria increases the cost decreases. The optimum cost was at the lowest speed (210 m/min) in both machining conditions.</p><p> A cost comparison between KC732 and KC5010 at different wear criteria and machin
36、ing conditions is presented in Figures 18 and19. It can be seen that KC732 responded positively to coolant in terms of extended tool life, and increased the optimum cutting speed from 260m/min to 360 nn/min. Nonetheless,
37、 coolant introduction to KC5010 at high speed cutting lowered the tool life and increased machining cost. The data presented in the aforementioned figures shows that dry cutting is more cost effective</p><p>
38、; Figures18, and 17for KC313 (uncoated) show the relationship between costs and wear criterion at different cutting speeds under dry and wet conditions. Figure 20, and Figure 21 are plotted for KC732 presenting cutting
39、cost as a function of wear criteria for dry and wet conditions. Figure 3-21A and Figure 3-21B are plotted for KC5010. The curves show that for the same cutting velocity, by increases the selected wear criterion, the cost
40、 decreases.</p><p> The improved performance of (KC313) under wet over dry cutting in terms off tool life is presented in Figure 22. The results of the two coatings testing methods, of flank wear for the KC
41、732 and KC5010 are shown in Figure 23. Clearly this indicates improvement in cutting inserts' life with TiN-TiCN-TiN coatings (KC732) under wet over dry cutting, and reduction in tool life of TiALN coating (KC5010) o
42、n wet cutting. Finally, KC732 provides superior performance under all cutting conditions over KC50</p><p> The variation of cost versus cutting speed at different wear criteria (dry ).</p><p>
43、 The variation of cost versus cutting speed at different wear criteria (wet).</p><p> Figure 23 Cost variation with speed for KC313, (a) The variation of cost versus cutting speed at different wear criteria
44、 (dry), (b) The variation of cost versus cutting speed at different wear criteria (wet).</p><p> The variation of cost versus cutting speed at 0.4mm wear criterion.</p><p> The variation of co
45、st versus cutting speed at 0.6mm wear criterion</p><p> Figure 24 Cost versus speed comparison at wet and dry at two values of wear Criterion: (a) The variation of cost versus cutting speed at 0.4mm wear Cr
46、iterion, (b) The variation of cost versus cutting speed at 0.6mm wear criterion.</p><p> The variation of cost versus cutting speed at different wear criteria (dry ).</p><p> The variation of
47、cost versus cutting speed at different wear criteria (wet).</p><p> Figure 25 Cost variation with speed for KC732, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The va
48、riation of cost versus cutting speed at different wear criteria (wet).</p><p> The variation of cost versus cutting speed at different wear criteria (dry ).</p><p> The variation of cost versu
49、s cutting speed at different wear criteria (wet).</p><p> Figure 26 Cost variation with speed for KC732, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of
50、 cost versus cutting speed at different wear criteria (wet).</p><p> Cost versus speed at 0.4 mm wear criterion</p><p> Cost versus speed at 0.6 mm wear criterion</p><p> Figure
51、27 Cost comparison between KC5010 and KC732 at different wear criteria (a) Cost versus speed at 0.4 mm wear criterion, (b) Cost versus speed at 0.6 mm wear criterion.</p><p> Table4 Comparison between three
52、 cutting inserts at the same wear criterion </p><p> The variation of cost versus wear criterion at different cutting speeds (dry ).</p><p> The variation of cost versus cutting speed at diffe
53、rent wear criteria (wet).</p><p> Figure 26 Cost variation with wear criteria for KC313, (a): The variation of cost versus cutting speed at different wear criteria (dry), (b): The variation of cost versus c
54、utting speed at different wear criteria (wet).</p><p> ?。╝)The variation of cost versus wear criterion at different cutting speeds (dry )</p><p> (b)The variation of cost versus wear criterion
55、at different cutting speeds (wet).</p><p> Figure 3-20 Cost variation with wear criteria for KC732, (a): The variation of cost versus cutting speed at different wear criteria (dry), (b): The variation of co
56、st versus cutting speed at different wear criteria (wet).</p><p> The variation of cost versus wear criterion at different cutting speeds (dry ).</p><p> The variation of cost versus wear crit
57、erion at different cutting speeds (wet).</p><p> Figure 3-21 Cost variation with wear criteria for KC5010, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation
58、of cost versus cutting speed at different wear criteria (wet)</p><p> Tool life at 0.4 mm wear criterion for KC313 (dry & wet).</p><p> (b)Tool life at 0.4 mm wear criterion of KC732 and K
59、C5010 (dry &wet).</p><p> Figure 3-22 Tool life comparison at 0.4 wear criterion under dry and wet(a) Tool life at 0.4 mm wear criterion for KC313 (dry & wet), (b) Tool life at 0.4 mm wear criterion
60、 of KC732 and KC5010 (dry &wet).</p><p> The cutting inserts were retested at cutting speed values within the range of experimental testing speeds under dry and wet machining condition. The results pres
61、ented are for the cemented carbide uncoated (KC313), cemented carbide coated with TiALN (KC5010), and for the KC732. Figures 3-23A and 3-23B show the theoretical and experimental results of machining KC313 at a cutting s
62、peed of 100 m/min, and 160 m/min respectively. A good agreement between theoretical and experimental values was noticed</p><p> Theoretical and experimental results of machining KC313 at 100m/min.</p>
63、<p> Theoretical and experimental results of machining KC313 at 160m/min.</p><p> Figure 3-23 Theoretical and experimental results for KC313 under wet and dry cutting at different speeds: (a) Theore
64、tical and experimental results of machining KC313 at 100m/min, (b) Theoretical and experimental results of machining KC313 at 160m/min.</p><p> Theoretical and experimental results of machining KC5010 at 28
65、0m/min.</p><p> Theoretical and experimental results of machining KC5010 at 390m/min.</p><p> Figure 3-24 Theoretical and experimental results for KC5010 under wet and dry cutting at different
66、 speeds: (a) Theoretical and experimental results of machining KC5010 at 280m/min, (b) Theoretical and experimental results of machining KC5010 at 390m/min.</p><p> Theoretical and experimental results of m
67、achining KC732 at 280m/min.</p><p> Theoretical and experimental results of machining KC732 at 390m/min.</p><p> Figure 3-25 Theoretical and experimental results for KC732 under wet and dry cu
68、tting at different speeds: (a) Theoretical and experimental results of machining KC732 at 280m/min, (b)Theoretical and experimental results of machining KC732 at 390m/min.</p><p><b> 中文翻譯:</b>&l
69、t;/p><p><b> 刀具成本的檢測</b></p><p> 加工成本是加工工具成本和切削成本的總和。機床成本由閑置費用,加工費用和工具改變費用組成。當改變切削速度的情況下閑置費用保持不變。從機械數(shù)據(jù)手冊[24]上表明機械設備成本的公式如下:錯誤!未指定書簽。</p><p> 為了優(yōu)化切割條件,必須確定切割深度大小和切割速度的數(shù)學關
70、系式.在 我們學習的泰勒模型將被用于確定切削速度對切削刀具壽命的影響:</p><p> VT" =C --------------------3-2</p><p><b> V=切削速度</b></p><p> T=切割時產(chǎn)生的標準金額側翼磨損(例如.0.2毫米)</p><p> N和C都是由被
71、使用的材料或者工作條件所決定的常數(shù). ,</p><p> 為了確定進給時的常數(shù)‘n’和‘C’我們以4140鋼在實驗的條件下進行研究,以LogV和LogT為坐標進行作圖,畫出了三種類型的進給圖形,圖1、圖2是對KC313為研究對象在干和濕的條件下分別做出的圖形,圖3和圖4是對KC732為研究對象在干和濕兩種狀態(tài)下所做的圖形,另外,圖5、圖6是以KC5010為研究對象在干和濕兩種狀況下所做的圖形. 從上述的圖形可
72、以看出不管測量的次數(shù)有多少,其結果都是呈直線分布的形式下降,從曲線我們能夠看出,在相同的切削速度的條件下,增加磨損標準和對KC313和KC732使用冷卻液都可以提高工具的使用壽命。然而,對于KC5010來說提高磨損標準和降低使用冷卻液對提高KC5010工具壽命有好處。冷卻乳液的這種抑制作用和對磨損機構的效果我們把它列入到了第五章。以及其他類型的磨損也將插入到那里研究。</p><p> 金屬的切削研究主要集中在
73、刀具的磨損、刀具的壽命和磨損機理。不過,未來的研究應該更加關注其他因素的影響:</p><p> 通過工廠體系建立磨損標準,基本的刀具磨損開端取決于工廠的產(chǎn)品。</p><p> 使用刀具的類型,向碳素鋼刀具和高速切削刀具。</p><p> 這對于研究在干和濕的條件下研究影響刀具壽命的因素常數(shù)(C,n)是有用的。這將提高刀具的壽命,因為它也將影響到切削的經(jīng)濟
74、性[24]。</p><p> 為了確定切削液在選擇磨損標準時所起的作用,不同的磨損標準和經(jīng)常的進給成本在HMS下必須被研究。不同切削標準的刀具壽命常數(shù)在表(1)所列的表格中被摘錄和劃分。從圖7。圖8、圖9的常數(shù)(C,n)的價值在表1和表2中被反映出來。在以后的圖中說明這些參數(shù)和磨損標準的關系。圖10描述了‘n’和磨損標準的關系。當提高n時磨損標準的變化。</p><p><b&g
75、t; 圖1</b></p><p> (a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)</p><p><b> 圖2</b></p><p> (b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 圖2 KC31
76、3在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p><b> 圖3</b></p><p> (a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(
77、干條件)</p><p><b> 圖4</b></p><p> (b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 圖3-9 KC732在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b)
78、 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p><b> 圖5</b></p><p> 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)</p><p><b> 圖6</b></p><p> (b)以Log
79、(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 圖3 KC5010在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形 (a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件) (b) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 表1 刀具壽命常數(shù)的范圍劃分
80、</p><p> 表2 在三種刀具材料下由‘C’和‘n’所做的磨損標準圖(干條件下)</p><p> 表3 在三種刀具材料下由‘C’和‘n’所做的磨損標準圖(濕條件下)</p><p> 在這兩種條件下價值能夠得到提高,另外,濕潤條件‘n’的價值要比干燥條件‘n’的價值低,直到磨損標準達到0.38以后,干燥條件的‘n’開始大于濕潤條件的 ‘n’。圖3-11
81、B可以看出‘C’在磨損標準所做的圖形中,在干和濕的條件下磨損標準提高時 ‘C也隨之提高。然而,濕的條件下‘C’的價值要比干的條件下高。這證明在整個切削過程中通過使用冷卻液提高刀具的壽命和提高磨損標準都可以一直的保護切削刀具材料。</p><p> 接下來,圖3-12A描述了KC732材料在干和濕的條件下‘n’與磨損標準之間的關系。磨損價值隨著‘n’的提高而提高。此外,濕曲線要比干曲線高。圖3-12B描述的一個常
82、數(shù)‘C’和磨損價值的比例關系。然而,濕條件的‘C’曲線比干條件下的曲線高,這表面對于材料KC732來說使用冷卻液是有益處的。更為重要的這有利于提高磨損標準。‘C’的價值越高,刀具的使用壽命也就變的越高。圖3-13A表明冷卻液對刀具性能的影響。因此?!畁’越高,刀具的使用壽命就越低。圖3-13B可以看出通過使用冷卻液和提高磨損價值可以降低‘C’,這說明刀具在濕潤的條件下,刀具的使用壽命比較短。之前研究的都是材料KC313和材料KC732,
83、提高‘n’就意味著刀具的壽命將被縮短。然而。大幅度的提高濕曲線‘C’超過干曲線‘C’的補償下降,KC313和KC732的使用壽命將延長。與次相反。KC5010對此正好相反。圖3-14A和圖3-14B是沒有被碳包裹的情況(KC313)。他表面了在干和濕的切削條件下不同磨損標準的切削速度的價值的關系。</p><p><b> 圖7</b></p><p> n與磨損
84、標準為坐標建立的關系圖(干和濕條件下)</p><p><b> 圖8</b></p><p> C與磨損標準為坐標建立的關系圖(干和濕條件下)</p><p> 圖3-11 KC313的以泰勒常數(shù)與磨損標準為坐標建立的關系圖(a)n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下)<
85、/p><p><b> 圖9</b></p><p> n與磨損標準為坐標建立的關系圖(干和濕條件下)</p><p><b> 圖10</b></p><p> C與磨損標準為坐標建立的關系圖(干和濕條件下)</p><p> 圖3-12 KC732的以泰勒常數(shù)與磨損
86、標準為坐標建立的關系圖(a)n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下)</p><p><b> 圖11</b></p><p> (a) n與磨損標準為坐標建立的關系圖(干和濕條件下)</p><p><b> 圖12</b></p><
87、p> (b)C與磨損標準為坐標建立的關系圖(干和濕條件下)</p><p> 圖3-13 KC5010的以泰勒常數(shù)與磨損標準為坐標建立的關系圖(a)n與磨損標準為坐標建立的關系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關系圖(干和濕條件下).</p><p> 這兩個條件表明當磨損標準增加的同時機床的成本下降。盡管如此,當成本增加的速度達到再增加就叨叨最佳時。圖3-15
88、A和圖3-15B是由磨損標準在(0.4-0.6毫米)時,干和濕條件下經(jīng)濟性的比較。干切削的最佳切削速度是90米/分而濕切削的最佳切削速度是120米/分。</p><p> 在圖3-16A和圖3-16B中列出了在干和濕的條件下含有KC732涂層的速度與成本的函數(shù)關系。再次,當磨損標準增加的時候,成本下降。此外,干切削的最佳切削速度是260米/分,而濕切削的最佳切削速度是360米/分。這表面冷卻液對這種材料很重要,
89、它不僅可以降低成本,而且還可以提高生產(chǎn)率。</p><p> 圖3-17A和圖3-17B概括了在干和濕的條件下,對涂有TIALN的材料KC5010的切削速度和成本之間的關系。當切削速度提高時,切削成本也隨之提高,當磨損標準提高,切削成本下降。在這兩種切削條件下,最佳的切削成本是在速度最低達到210米/分的時候。</p><p> 圖3-18A和圖3-18B描述的是在不同的磨損標準和不同
90、的切削條件下KC732和KC5010的切削成本的比較。它可以明確地反映出對于KC732來說,冷卻液可以延長刀具的壽命。切削速度從260米/分到360米/分為最佳的切削速度。不過,對于KC5010來說在高速加工的情況下冷卻液可以使它的刀具壽命降低而且使切削成本提高。</p><p> 從上面這些數(shù)據(jù)可以看出對于KC732來說,在速度為210米/分-310米/分的速度范圍內干切削要比濕切削的經(jīng)濟效率高。當速度達到3
91、10米/分是效率最高。對于切削材料KC5010來說在干條件下速度為210米/分時切削成本有效。因此,不管KC732的成本,它的磨損都遠遠的超過沒有處理的KC313和KC5010。表3-10總結了干和濕條件下的最佳切削速度和最佳的切削成本。</p><p> 圖3-19A和圖3-19B列出的是沒有經(jīng)過處理的KC313在干和濕的條件下,不同的切削速度下切削成本和磨損標準之間的關系。圖3-20A和圖3-20B列出了處
92、理后的KC732在干和濕的條件下的磨損標準函數(shù)。圖3-21A和圖3-21B列除了KC5010在干和濕的條件下的磨損標準函數(shù)。曲線表面在切削速度相同的條件下,增加磨損標準,切削成本下降。</p><p> 在圖3-22A表明在濕的條件下改變KC313的性能要比在干的條件下改變其性能使刀具的壽命降低。在圖3-22B可以看出KC732和KC5010經(jīng)過表面處理后的結果和側面的磨損情況。這清楚的表明在濕潤的條件下KC3
93、72表面涂TIN-TICN-TIN要比在干的條件下效果明顯。在濕的條件下對KC5010表面涂TIALN會減少它的刀具壽命。最后,KC732在所有條件下它的切削性能都要遠遠的超過KC5010。</p><p><b> 圖13</b></p><p> 在不同磨損標準下,切削速度與成本的關系圖干切削條件下)</p><p><b>
94、 圖14</b></p><p> 在不同磨損標準下,切削速度與成本的關系圖(濕切削條件下)</p><p> 圖3-14 KC313的速度與切削成本的變化 (a)在不同磨損標準下,切削速度與成本的關系圖(干切削條件下) (b) 在不同磨損標準下,切削速度與成本的關系圖(濕切削條件下)</p><p><b> 圖15</b>
95、;</p><p> 在磨損標準為0.4毫米時,成本與切削速度的關系圖</p><p><b> 圖16</b></p><p> 在磨損標準為0.6毫米時,成本與切削速度的關系圖</p><p> 圖3-15 以成本和速度為坐標軸,在干和濕兩種情況下分別在兩種磨損標準下的比較。 (a)在磨損標準為0.4毫米時,
96、成本與切削速度的關系圖 (b) 在磨損標準為0.6毫米時,成本與切削速度的關系圖</p><p><b> 圖17</b></p><p> 在不同的磨損標準的情況下,切削速度和成本的關系圖(干條件下)</p><p><b> 圖18</b></p><p> (b)在不同的磨損標準的情
97、況下,切削速度和成本的關系圖(濕條件下)</p><p> 圖3-16 KC732的切削速度和成本的關系圖 (a)在不同的磨損標準的情況下,切削速度和成本的關系圖(干條件下)(b) 在不同的磨損標準的情況下,切削速度和成本的關系圖(濕條件下)</p><p><b> 圖19</b></p><p> 在不同的磨損標準的情況下,切削速度和
98、成本的關系圖(干條件下)</p><p><b> 圖20</b></p><p> 在不同的磨損標準的情況下,切削速度和成本的關系圖(濕條件下)</p><p> 圖3-17 KC5010的切削速度和成本的關系圖 (a)在不同的磨損標準的情況下,切削速度和成本的關系圖(干條件下)(b) 在不同的磨損標準的情況下,切削速度和成本的關系圖(
99、濕條件下)</p><p><b> 圖21</b></p><p> (a)在磨損標準為0.4毫米的情況下,成本和速度的關系圖</p><p><b> 圖22</b></p><p> (b)在磨損標準為0.6毫米的情況下,成本和速度的關系圖</p><p>
100、圖3-18 在不同的磨損標準的情況下,對KC732和KC5010的切削成本的比較。(a)在磨損標準為0.4毫米的情況下,成本和速度做出的關系圖 (b) 在磨損標準為0.6毫米的情況下,成本和速度做出的關系圖</p><p> 表4 在相同的磨損標準時,三種刀具材料的比較</p><p><b> 圖23</b></p><p> (a)在
101、不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)</p><p><b> 圖24</b></p><p> (b)在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)</p><p> 圖3-19 KC313 磨損標準和成本的關系圖(a)在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b) 在不同的切削速度下,
102、磨損標準與切削成本的關系圖(濕條件下)</p><p><b> 圖25</b></p><p> 在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)</p><p><b> 圖26</b></p><p> (b)在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)<
103、/p><p> 圖3-20 KC732 磨損標準和成本的關系圖(a)在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b) 在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)</p><p><b> 圖27</b></p><p> 在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)</p><
104、p><b> 圖28</b></p><p> 在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)</p><p> 圖3-21 KC5010 磨損標準和成本的變化圖 (a)在不同的切削速度下,磨損標準與切削成本的關系圖(干條件下)(b) 在不同的切削速度下,磨損標準與切削成本的關系圖(濕條件下)</p><p><b
105、> 圖29</b></p><p> KC313在磨損標準為0.4毫米的情況下刀具的壽命圖(干和濕)</p><p><b> 圖30</b></p><p> ?。╞)在磨損標準為0.4毫米的情況下,KC732和KC5010的刀具壽命圖(干和濕)</p><p> 圖3-22 在磨損標準為0.
106、4 毫米,干和濕條件下,刀具壽命的比較(a)KC313在磨損標準為0.4毫米的情況下刀具的壽命圖(干和濕)(b) 在磨損標準為0.4毫米的情況下,KC732和KC5010的刀具壽命圖(干和濕)</p><p> 在實驗測試的速度范圍內,分別在干和濕的情況下,對刀具材料重新進行測試。結果提出了不經(jīng)過熱處理的KC313,表面涂有TIALN的KC5010和KC732。從圖3-23A和圖3-23B可以看出KC313在切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機床刀具設計外文文獻翻譯、中英文翻譯
- 金屬切削外文翻譯@中英文翻譯@外文文獻翻譯
- 汽車舉升機中英文翻譯@外文翻譯@外文文獻翻譯
- jsp最佳實踐外文翻譯@中英文翻譯@外文文獻翻譯
- 機械設計外文文獻翻譯@中英文翻譯@外文文獻翻譯
- plc的應用外文文獻翻譯、中英文翻譯、外文翻譯
- 植物保護外文文獻翻譯、中英文翻譯、外文翻譯
- 柔性制造中英文翻譯、外文文獻翻譯
- 如何延長軸承壽命外文文獻翻譯@外文文獻翻譯@中英文翻譯
- 切削加工新概念外文翻譯@中英文翻譯@外文文獻翻譯
- 基于單片機外文翻譯@中英文翻譯@外文文獻翻譯
- 激光清洗及其應用外文文獻翻譯、中英文翻譯、外文翻譯
- 汽車制動系統(tǒng)畢業(yè)外文文獻翻譯@中英文翻譯@外文翻譯
- 螺桿壓縮機外文文獻翻譯@中英文翻譯@外文翻譯
- 立體車庫外文翻譯、畢業(yè)中英文翻譯、外文文獻翻譯
- 液壓系統(tǒng)的綠色設計外文文獻翻譯@中英文翻譯@外文翻譯
- 齒輪和軸的介紹外文翻譯@中英文翻譯@外文文獻翻譯
- 沖壓模具設計畢業(yè)外文翻譯@中英文翻譯@外文文獻翻譯
- 模具設計與制造外文翻譯@中英文翻譯@外文文獻翻譯
- 數(shù)控技術外文翻譯@數(shù)控編程外文文獻翻譯@中英文翻譯
評論
0/150
提交評論