2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  河 北 農 業(yè) 大 學</p><p>  畢業(yè)論文外文資料翻譯</p><p>  學 院:現代科技學院 </p><p>  專   業(yè):農業(yè)機械化及其自動化0701班 </p><p>  姓 名:劉旭 </p&g

2、t;<p>  學 號:2007614290123 </p><p>  外文出處: Power and Propulsion </p><p>  附 件:1.外文原文;2.外文資料翻譯譯文</p><p>  完成日期:2011年5月9日

3、</p><p>  Dynamic Modeling of Vehicle Gearbox fox Early Detection of Localized Tooth Defect</p><p>  Nagwa Ablhalim,Nabil Hammed,Magdy Abdel-hady,Shawki Abouel-Seoud and Eid S.Mohamed</p>

4、<p>  Helwan University</p><p><b>  ABSTRACT</b></p><p>  Dynamic modeling of the gear vibration is a useful tool to study the vibration response of a geared system under vario

5、us gear parameters and operation conditions. An improved understanding of vibration signal is required for early detection of incipient gear failure to achieve high reliability. However, the aim of this work is to make u

6、se of a 6-degree-of-freedom gear dynamic model including localized tooth defect for early detection of gear failure. The model consists of a gear pair, two shafts</p><p>  KEYWORDS: Vibration acceleration, s

7、ystem modeling, Crest Factor, Kurtosis value, defect size, gear meshing, pinion, gear</p><p>  NOMENCLATURE</p><p>  JD,J1,J2,JL Drive motor, pinion, gear, and load mass moment of inertia rep

8、lacement decision in a suitable time.</p><p>  m1,m2 Masses of pinion and gear.</p><p>  TD Driving motor torque.</p><p>  TL

9、 Load torque.</p><p>  TF1,TF2 Friction torque.</p><p>  C1,C2 Viscous damping coefficient of pinion and gear bearing.</p><p>  C

10、m Gear mesh damping.</p><p>  Km Gear mesh stiffness.</p><p>  K1,K2 Pinion and gear shaft stiffness.</p><p>  σ4

11、 The variance square.</p><p>  N The number of samples.</p><p>  f The defect width in face direction.</p><p>

12、  Kk Unit width Hertzian stiffness.</p><p>  θD, θ1,θ2,θL Angular displacement of driver motor, pinion, gear and load.</p><p>  θD, θ1,θ2,θL

13、 Angular velocity of drive motor, pinion, gear and load.</p><p>  θD, θ1,θ2,θL Angular acceleration of drive motor, pinion, gear and load.</p><p>  INTRODUCTION</p>&l

14、t;p>  Much of the past research in the dynamic modeling area has concluded that an essential solution to the problem is to use a comprehensive computer modeling and simulation tool to aid the transmission design and e

15、xperiments. These have been two major obstacles to such an approach:</p><p> ?。?)Progress in understanding of the basic gear rattle phenomenon has been limited and slow. This is because the engine-clutch-tra

16、nsmission system involves some strong momlinearities including gear backlash, multi-valued springs, dry friction, hysteresis, and the like.</p><p> ?。?)The gear rattle is a system problem and not only proble

17、m of gear teeth. Even through the research and industrial community has discussed the difficulties in varies stages of the problem, yet no thorough frame work covering the entire investigation process of such problem cur

18、rently exists. This is largely due to the complexity of the power train system, which may make a computer analysis tool inefficient, in particularly when many different elements and clearances are encountered (e.g.,gears

19、,b</p><p>  A comprehensive review of mathematical models used in gear dynamics, published before 1986,has been presented by[4].In this review, gear dynamic models without defects have been discussed. In the

20、 past few years, researchers have been working on the gear dynamic models which include defects like pitting, spalling, crack and broken tooth.</p><p>  A single-degree-of-freedom model is used which include

21、 the effects of variable mesh stiffness, damping, gear errors, profile modifications and backlash. The effect of time-varying meshing damping is also included in this case. The solution is obtained by using the harmonic

22、balance methods. A method of calculated the optimum profile modification has been proposed in order to obtain a zero vibration of the gear pair[5-7].They also proposed a linear approximate equation to mode the gear pair

23、by usi</p><p>  Gear rattle vibration is a undesirable vibration for passenger cars and light trucks equipped with manual transmissions. Unlike automatic transmissions, manual transmission do not have the hi

24、gh viscous damping inherent to a hydrodynamic torque converter to suppress the impacting of gear teeth oscillating through their gear backlash. Therefore a significant level of vibration an be produced by the gear rattle

25、 and transmitted both inside the passenger compartment and outside the vehicle.Gear rattl</p><p>  The gear pair dynamic models including defects have been done by [9]. The study suggests that little work ha

26、s been done on modeling of gear vibrations in the presence of local tooth fault has yet to be develop a multidegree-of-freedom nonlinear model for a gear pair that can be used to study the effect of lateral-torsional vib

27、ration coupling on vibration response in the presence of localized tooth defect. A typical fault signal is assumed to be impulsive in nature because of the way it is genera</p><p>  SIGNAL-PROCESSING TECHNEQ

28、UE</p><p>  Among various signal-processing techniques,crest factor and kurtosis analysis have been used for analyzing the whole vibration signal for the early detection of fault. In this section, crest fac

29、tor and kurtosis value have been explained.</p><p>  MATHEMATICAL MODEL FORMULATION</p><p>  Helical gears are almost always used in automotive transmissions. The meshing stiffness of a helical

30、tooth pair is time-varying[10], and was modeled as a series of suggested spur gears so that the simulation techniques for spur gears can be applied. Where M is Module(mm), b is Face width(mm),αis pressure angle (deg), βi

31、s helix angle (deg) and D1 is pitch diameter (mm). Fig.2 shows the equivalent gear system in the first gear-shift, where the main parameters for the gear system of Fiat-131gearbox</p><p>  汽車變速器動態(tài)建模輪齒局部缺陷的早期

32、檢測</p><p>  Nagwa Abd-elhalim, Nabil Hammed, Magdy Abdel-hady, Shawki Abouel-Seoud and Eid S. Mohamed</p><p><b>  阿勒旺大學</b></p><p><b>  摘要</b></p><

33、;p>  在研究齒輪系統中各種齒輪參數的振動響應和操作條件時,齒輪振動的動態(tài)建模是一個非常有用的工具。對早期的齒輪檢測提出了一種改進理解的振動信號,但還沒達到高的可靠性。但是,這項工作的目的是利用一個6自由度的齒輪動力學模型對齒輪輪齒缺陷故障的早期檢測。該模型包括一對齒輪副、兩個軸、兩個慣性負載、動力傳動裝置和軸承。由于齒輪的誤差和變動,該模型被采用時受到變嚙合剛度、阻尼、反彈和勵磁影響。模擬信號顯示的結果表明,隨著缺陷尺寸的增加

34、加速度信號的振幅增加。模擬信號的波峰因素和峰值隨著缺陷的增加而加重。雖然波峰因素和峰值做同樣的趨勢,但和波峰因素相比峰值是一個比較好的指標。</p><p>  關鍵詞:振動加速度、系統建模、波峰因素、峰值、缺陷大小、齒輪嚙合、齒輪</p><p><b>  專業(yè)術語</b></p><p>  JD, J1, J2, JL 驅

35、動電機、小齒輪、大齒輪和負載在一定時間內的慣性矩</p><p>  m1, m2 大齒輪、小齒輪的模數</p><p>  TD 發(fā)動機驅動轉矩</p><p>  TL 負載力矩</p><p>  TF1, TF2 摩擦力

36、矩</p><p>  C1,C2 齒輪、軸承的粘滯阻尼系數</p><p>  Cm 齒輪嚙合阻尼</p><p>  Km 齒輪嚙合剛度</p><p>  K1, K2 齒輪、齒輪軸的剛度</p><

37、;p>  σ4 平方差</p><p>  N 樣本數量</p><p>  f 寬度方向的缺陷</p><p>  Kk 單位寬度的剛度</p><p>  θD, θ1,θ2,θL

38、驅動電機、小齒輪、大齒輪和負載的角位移</p><p>  θD, θ1,θ2,θL 驅動電機、小齒輪、大齒輪和負載的角速度</p><p>  θD, θ1,θ2,θL 驅動電機、小齒輪、大齒輪和負載的角加速度</p><p><b>  引言</b></p><p>  在大多數過去的動態(tài)建模研究

39、領域中,解決問題的重要辦法是全面使用計算機建模和仿真工具來輔助變速器的設計和實驗。這種方法有兩種主要的障礙:</p><p> ?。?)對齒輪傳動中噪聲基本認識的進展是有限的和緩慢的。這是因為發(fā)動機離合器傳動系統中包括齒輪側隙、多值彈簧、非線性滯后等等。</p><p> ?。?)齒輪發(fā)出的噪聲是一個系統問題,并不是齒輪的唯一問題。即使是工業(yè)研究領域已經討論了這個問題在不同階段所出現的不同

40、問題,但并沒有徹底覆蓋工作的框架,整個研究過程中的問題依然存在。這主要是由于列車電力系統的復雜性,可能導致你的計算機地分析工具效率不高,尤其是工作中遇到許多不同的因素和間隙(例如:齒輪、軸承、花鍵、同步器和離合器)。</p><p>  在1986年出版之前,對齒輪動力學中提出的齒輪動態(tài)建模進行了審查。這次審查中,對不存在齒輪缺陷的齒輪動力學模型進行了討論。在過去的幾年里,研究人員對齒輪的動態(tài)模型缺陷進行了研究,

41、其中包括點蝕、剝落、裂縫和齒輪折斷等。</p><p>  但自由度系統模型中,對嚙合剛度的影響包括4個方面的因素,阻尼、齒輪誤差、輪廓變動和齒側間隙,時變嚙合阻尼效應也包含在這種情況中。解決問題的方法是利用諧波平衡的方法。為了實現齒輪副的零振動,提出了一種最優(yōu)化的計算方法。他們還利用齒輪副單自由度模型提出了一個近似的線性方程模型。</p><p>  齒輪噪聲振動是叫吃和輕型貨車手動變速

42、箱中的不良振動。不同于自動變速器的是,手動變速箱沒有一個固有的高粘性阻尼液力變矩器以制止通過齒輪間隙造成的車輪擺動的影響。因此,無論是在車廂內外由齒輪振動和傳動產生的噪聲,對車輛振動的影響都非常大。隨著人們對汽車高性能的追求,齒輪松動、振動以及其他汽車傳動系產生的噪聲已經成為人們關注的重點。傳動系統中的扭轉振動是齒輪振動的一種主要噪聲來源。手動變速箱產生的齒輪噪聲是由于齒輪收到齒輪間隙振動的影響。通過軸和軸承把碰撞產生的影響傳輸到變速箱

43、殼體。</p><p>  對齒輪副的動態(tài)模型缺陷的研究結果表明,對齒輪副動態(tài)模型缺陷已做了大量工作,用準確的分析方法對齒輪振動的檢測在當時齒輪故障方面還沒得到發(fā)展。然而,本研究的目的是建立一個多自由度非線性模型用于研究,結果表明輪齒局部缺陷的扭轉振動是耦合振動的響應。由于他的產生一個典型的故障信號被假設為自然的脈沖信號。在不同操作條件下(負荷、轉速等),模擬人工對多級汽車變速器齒輪缺陷進行了介紹。同時也對信號的

44、仿真和實驗處理進行了介紹。</p><p><b>  信號處理技術</b></p><p>  在各種各樣的信號處理技術中,波峰因素、峰值已用于分析整個振動信號的早期故障。在本節(jié)中,波峰因素和峰值已被解釋。</p><p><b>  數學模型</b></p><p>  汽車變速器中的齒輪大都是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論