土建專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯--建筑中的結(jié)構(gòu)設(shè)計(jì)及建筑材料_第1頁(yè)
已閱讀1頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  外文翻譯:</b></p><p>  Structure in Design of Architecture</p><p>  And Structural Material</p><p>  We have and the architects must deal with the spatial aspe

2、ct of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space

3、 forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.</

4、p><p>  Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic considerations .I

5、n fact , we can say that an architect’s ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .</p><p>  The object of the schematic feed back level is

6、 to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spat

7、ial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential perfor

8、mance-space in</p><p>  At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibilit

9、y and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily

10、 fed back to improve the space-form scheme.</p><p>  At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect

11、’s structural needs will shift to approximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of majo

12、r subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem in</p><p>  When the designer and the client are satisfied with the feasibility of

13、a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the

14、final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, sinc</p>

15、<p>  To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful,

16、but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key c

17、omponent properties .That is, the properties of major subsystems need be</p><p>  Of course this success comes from the development of the Structural Material.</p><p>  The principal constructio

18、n materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Gr

19、eeks and Romans sometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also use

20、d a natural cement called puzzling,</p><p>  Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron

21、 and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in larg

22、e quantities at low prices. The enormous advantage of steel is its tensile force which, as we have seen, tends to pull</p><p>  Modern cement, called Portland cement, was invented in 1824. It is a mixture of

23、 limestone and clay, which is heated and then ground into a power. It is mixed at or near the construction site with sand, aggregate small stones, crushed rock, or gravel, and water to make concrete. Different proportion

24、s of the ingredients produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into all kinds of shapes. And whereas steel has great ten</p><p&g

25、t;  They also complement each other in another way: they have almost the same rate of contraction and expansion. They therefore can work together in situations where both compression and tension are factors. Steel rods a

26、re embedded in concrete to make reinforced concrete in concrete beams or structures where tensions will develop. Concrete and steel also form such a strong bond─ the force that unites them─ that the steel cannot slip wit

27、hin the concrete. Still another advantage is that steel does not</p><p>  The adoption of structural steel and reinforced concrete caused major changes in traditional construction practices. It was no longer

28、 necessary to use thick walls of stone or brick for multistory buildings, and it became much simpler to build fire-resistant floors. Both these changes served to reduce the cost of construction. It also became possible t

29、o erect buildings with greater heights and longer spans.</p><p>  Since the weight of modern structures is carried by the steel or concrete frame, the walls do not support the building. They have become curt

30、ain walls, which keep out the weather and let in light. In the earlier steel or concrete frame building, the curtain walls were generally made of masonry; they had the solid look of bearing walls. Today, however, curtain

31、 walls are often made of lightweight materials such as glass, aluminum, or plastic, in various combinations.</p><p>  Another advance in steel construction is the method of fastening together the beams. For

32、many years the standard method was riveting. A rivet is a bolt with a head that looks like a blunt screw without threads. It is heated, placed in holes through the pieces of steel, and a second head is formed at the othe

33、r end by hammering it to hold it in place. Riveting has now largely been replaced by welding, the joining together of pieces of steel by melting a steel material between them under high heat.</p><p>  Priest

34、ess’s concrete is an improved form of reinforcement. Steel rods are bent into the shapes to give them the necessary degree of tensile strengths. They are then used to priestess concrete, usually by one of two different m

35、ethods. The first is to leave channels in a concrete beam that correspond to the shapes of the steel rods. When the rods are run through the channels, they are then bonded to the concrete by filling the channels with gro

36、ut, a thin mortar or binding agent. In the other (and </p><p>  Progressed concrete has made it possible to develop buildings with unusual shapes, like some of the modern, sports arenas, with large spaces un

37、broken by any obstructing supports. The uses for this relatively new structural method are constantly being developed.</p><p>  建筑中的結(jié)構(gòu)設(shè)計(jì)及建筑材料</p><p>  建筑師必須從一種全局的角度出發(fā)去處理建筑設(shè)計(jì)中應(yīng)該考慮到的實(shí)用活動(dòng),物質(zhì)及象征性的需求

38、。因此,他或他試圖將有相互有關(guān)的空間形式分體系組成的總體系形成一個(gè)建筑環(huán)境。這是一種復(fù)雜的挑戰(zhàn),為適應(yīng)這一挑戰(zhàn),建筑師需要有一個(gè)分階段的設(shè)計(jì)過(guò)程,其至少要分三個(gè)“反饋”考慮階段:方案階段,初步設(shè)計(jì)階段和施工圖設(shè)計(jì)階段。</p><p>  這樣的分階段涉及是必需的,它可使設(shè)計(jì)者避免受很多細(xì)節(jié)的困惑,而這些細(xì)節(jié)往往會(huì)干擾設(shè)計(jì)者的基本思路。實(shí)際上,我們可以說(shuō)一個(gè)成功的建筑設(shè)計(jì)師應(yīng)該具備一種從很多細(xì)節(jié)中分辨出更為基本的

39、內(nèi)容的能力。</p><p>  概念構(gòu)思階段的任務(wù)時(shí)提出和斟酌全局場(chǎng)地規(guī)劃,活動(dòng)相互作用及房屋形式方案。為實(shí)現(xiàn)這些,建筑師必須注意場(chǎng)地各部分的基本使用,空間組織,并應(yīng)用象征手法確定其具體形式。這就要求建筑師首先按照基本功能和空間關(guān)系對(duì)一項(xiàng)建筑設(shè)計(jì)首先構(gòu)思并模擬出一個(gè)抽象的建筑物,然后再對(duì)這一抽象的總體空間進(jìn)行深入探究。在開(kāi)始勾畫(huà)具體的建筑形似時(shí),應(yīng)考慮基本的場(chǎng)所跳進(jìn)加以修改。</p><p&

40、gt;  在方案階段,如果設(shè)計(jì)者能夠形象的預(yù)見(jiàn)所作方案的結(jié)構(gòu)整體性,并要考慮施工階段可行性及經(jīng)濟(jì)性,那將是非常有幫助的。這就要求建筑師或者過(guò)問(wèn)工程是能夠從主要分體系之間的關(guān)系而不是從構(gòu)建細(xì)節(jié)去構(gòu)思總體結(jié)構(gòu)方案。這種能夠易于反饋以改進(jìn)空間形式方案。</p><p>  在初步設(shè)計(jì)階段,建筑師的重點(diǎn)工作應(yīng)是詳細(xì)化可能成為最終方案的設(shè)計(jì),這是建筑師對(duì)結(jié)構(gòu)的要求業(yè)轉(zhuǎn)移到做分體系具體方案的粗略設(shè)計(jì)上。在這一階段應(yīng)該完成對(duì)結(jié)

41、構(gòu)布置的中等程度的確定,重點(diǎn)論證和設(shè)計(jì)主要分體系已確定它們的主要幾何尺寸,構(gòu)件和相互關(guān)系。這樣就可以依據(jù)全局設(shè)計(jì)方案,確定并解決各分體系的相互影響以及設(shè)計(jì)難題。顧問(wèn)工程師在這一過(guò)程中作用重大,但各細(xì)部的考慮還留有選擇余地。當(dāng)然,這些初步設(shè)計(jì)階段所作的決定仍可以反饋回取使方案概念進(jìn)一步改善,或甚至可能有重大變化。</p><p>  當(dāng)設(shè)計(jì)者和顧問(wèn)工程師對(duì)初始階段設(shè)計(jì)方案的可行性滿意時(shí),就意味著全部設(shè)計(jì)的基本問(wèn)題已

42、經(jīng)解決,不會(huì)再因細(xì)節(jié)問(wèn)題而發(fā)生大的變化。這是工作重點(diǎn)將再次轉(zhuǎn)移,進(jìn)入細(xì)部設(shè)計(jì)。在這一階段將重點(diǎn)完善各分體系的細(xì)節(jié)設(shè)計(jì)。此時(shí)包括結(jié)構(gòu)工程在內(nèi)的各個(gè)領(lǐng)域的專(zhuān)家的作用將十分突出,應(yīng)為所有施工的細(xì)節(jié)都必須設(shè)計(jì)出來(lái)。這一階段的決定,可能會(huì)反饋到第二階段并導(dǎo)致一些變化。如果第一階段和第二階段的設(shè)計(jì)做的深入,那么在最初兩個(gè)階段所得到的總體結(jié)論和最后階段的細(xì)節(jié)的重新設(shè)計(jì)不再是問(wèn)題。當(dāng)然,整個(gè)實(shí)際過(guò)程應(yīng)該是逐步發(fā)展的過(guò)程,從創(chuàng)造和細(xì)化(改進(jìn))總體設(shè)計(jì)概念

43、直到做出精確的結(jié)構(gòu)設(shè)計(jì)和細(xì)部構(gòu)造。</p><p>  綜上所述:在第一階段,建筑師必須首先用概念的方式來(lái)確定基本方案的全部空間形式的可行性。在第一階段,專(zhuān)業(yè)人員的合作是有意義的,但僅限于行程總的構(gòu)思方面;在第二階段,建筑師應(yīng)該能夠用圖形來(lái)確定各分體系的需求,并且通過(guò)估計(jì)關(guān)鍵構(gòu)件的性能來(lái)證明其相互作用的可行性。也就是說(shuō),主要分體系的性能只須做到一定深度,需要驗(yàn)證他們的基本形式和相互關(guān)系是協(xié)調(diào)一致的。這需要與工程師

44、進(jìn)行更加詳細(xì)與明確的合作;在第三階段,建筑師和專(zhuān)業(yè)人員必須繼續(xù)合作完成所有構(gòu)件的設(shè)計(jì)細(xì)節(jié),并制定良好的施工文件。</p><p>  當(dāng)然,這些設(shè)計(jì)的成功來(lái)源于建筑材料的發(fā)展與革新。</p><p>  早期的建筑材料主要是木材和砌塊,如磚塊、石材或瓦片及其它類(lèi)似的材料。磚和磚之間是由砂漿或者焦油狀的瀝青或其它粘合物粘結(jié)在一起。希臘人和羅馬人有時(shí)利用鐵棒或夾鉗來(lái)加固他們的建筑。例如,在雅典

45、的帕臺(tái)農(nóng)神廟的柱子,就是由在水中也能變得如石材般堅(jiān)硬的火山灰建成的。</p><p>  鋼材和水泥─現(xiàn)代最重要的兩種建筑材料,在19世紀(jì)得到了推廣。鋼材(從根本上說(shuō),是以鐵為主要成分并含有少量碳元素的合金),直到出現(xiàn)能夠限制其特殊用途(如制造刀刃)的費(fèi)勞力的鑄造方法,才被鑄造出來(lái)。在1856年貝塞麥煉鋼法出現(xiàn)之后,鋼材就以較低的價(jià)格大量供應(yīng)。鋼材最大的優(yōu)點(diǎn)就是它的抗拉強(qiáng)度非常高,這也就是說(shuō),當(dāng)它在我們已知的能拉

46、斷許多材料的一定拉力作用下,鋼材不會(huì)喪失它的強(qiáng)度。新的合金元素的加入,大大增加了鋼材的強(qiáng)度,并消除的它的一些缺點(diǎn)。例如,鋼材在應(yīng)力不斷變化時(shí)所表現(xiàn)出的疲勞強(qiáng)度有所見(jiàn)減小的傾向。</p><p>  現(xiàn)代的水泥(也叫波特蘭水泥),發(fā)明于1824年。它是一種由石灰石和粘土加熱后碾成粉末的混合物。它是在施工現(xiàn)場(chǎng)與砂子、骨料(小石塊、碎石、礫石)及水,拌制成混凝土。各成分含量的不同, 拌制出的混凝土強(qiáng)度和重量也不同?;炷?/p>

47、土應(yīng)用十分廣泛,它可以澆筑、泵送甚至噴射成所有形狀。而鋼材有很高的抗拉強(qiáng)度和混凝土具有很高的抗壓強(qiáng)度,因此,這兩種材料相互彌補(bǔ)了各自的不足。</p><p>  鋼筋和混凝土也在以另一種方式互補(bǔ),就是它們幾乎有著相同的收縮率和膨脹率。因此它們可以在拉力與壓力同時(shí)存在的條件下共同工作?;炷林屑尤脘摻?可以制成鋼筋混凝土梁或其它鋼筋混凝土構(gòu)件以抵抗出現(xiàn)的拉力?;炷梁弯摻钪g形成一種使它們粘結(jié)在一起的粘結(jié)力,這個(gè)力

48、使鋼筋在混凝土中不會(huì)產(chǎn)生滑移。酸會(huì)腐蝕鋼筋,而混凝土?xí)a(chǎn)生與酸相反的堿性化學(xué)反應(yīng)。</p><p>  結(jié)構(gòu)鋼和混凝土的使用是傳統(tǒng)的施工方式產(chǎn)生的主要變化。它使人們?cè)诮ㄔ於鄬咏ㄖr(shí),不再必須使用以石材或磚砌筑的厚墻了,并且也使建造一個(gè)防火地面變得簡(jiǎn)單多了。這些變化都有利于降低施工的費(fèi)用,而且這使建造更高更大的結(jié)構(gòu)變成可能。</p><p>  現(xiàn)代建筑物的重量由鋼或混凝土框架來(lái)承受,因此墻

49、體不再做承重墻。它們已經(jīng)變成能夠抵擋風(fēng)雨并進(jìn)行采光的幕墻了。在早期的鋼或混凝土框架建筑中,幕墻一般由砌塊建成,這些砌塊有著和承重墻一樣堅(jiān)實(shí)的外觀。但是現(xiàn)在, 幕墻則一般由諸如玻璃、鋁、塑料或各種混合材料等輕質(zhì)材料建成的。</p><p>  在鋼材建造中的另一種優(yōu)點(diǎn)是梁之間的連接方法。多年來(lái),傳統(tǒng)的連接方法是鉚接。鉚釘是一種有一頭看起來(lái)像沒(méi)有螺紋的圓頭螺絲釘。在現(xiàn)場(chǎng)施工時(shí),鉚釘被加熱,穿過(guò)剛片間的孔洞,在另一端靠

50、錘擊形成另一個(gè)頭以使之固定就位。現(xiàn)在鉚接大多已經(jīng)被焊接取代,焊接是一種通過(guò)在高溫下鋼材使它們連接在一起的連接方式。</p><p>  預(yù)應(yīng)力混凝土是鋼筋混凝土的一種改良方式。將鋼筋彎成各種形狀,使鋼筋具有一定的拉應(yīng)力。然后它們被用于預(yù)應(yīng)力混凝土,這種施工方法有兩種。一種方法是在混凝土中預(yù)留與鋼筋形狀相同的孔道,當(dāng)鋼筋穿過(guò)孔道后,通過(guò)向孔道灌注砂漿或粘結(jié)劑使鋼筋和混凝土粘結(jié)在一起。另一種更常用的方法是將鋼筋置于與

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論