版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 附錄一 科技論文翻譯</p><p><b> 論文翻譯</b></p><p> 選礦廢水對(duì)硫化礦浮選的影響</p><p> 陳建明1,2,劉潤清1,孫偉1,邱冠周1</p><p> 資源加工與生物工程學(xué)院,中南大學(xué),長沙410083,中國;</p><p>
2、 柳州中國錫業(yè)集團(tuán)有限公司,柳州545000,中國。</p><p> 2008年5月4日收到,2008年9月20日出版</p><p> 摘要:本文對(duì)選礦廢水對(duì)硫化礦浮選的影響進(jìn)行了研究,采用紅外光譜法和電化學(xué)測(cè)試。結(jié)果表明,鉛精礦水可以提高對(duì)方鉛礦的浮選,而硫精礦水對(duì)方鉛礦浮選的負(fù)面影響比蒸餾水大。黃鐵礦在三種水體中的浮選效果正好與方鉛礦相反。紅外光譜表明,鉛精礦水中的殘余鉛有利于
3、鉛黃藥在方鉛礦表面的形成。電化學(xué)結(jié)果表明,方鉛礦表面電化學(xué)反應(yīng)有明顯的變化。陽極極化加強(qiáng)而陰極極化減弱。</p><p> 關(guān)鍵字:礦物加工;方鉛礦;回收利用廢水;浮選</p><p><b> 1引言</b></p><p> 由于與人類生活息息相關(guān),水資源問題已越來越嚴(yán)重。在選礦過程中要消耗和排放很大一部分水。在中國,礦業(yè)廢水排放占整
4、個(gè)整個(gè)工業(yè)廢水排放的1/10。礦物加工產(chǎn)生的廢水一般含有大量懸浮固體顆粒,重金屬離子,浮選劑,有機(jī)物及其他污染物等,造成水資源浪費(fèi)和環(huán)境污染。因此,廢水的利用和回收已非常重要,具有很大的實(shí)踐意義。</p><p> 以前也有一些關(guān)于廢水回收?qǐng)?bào)告,報(bào)告顯示,經(jīng)過物理和化學(xué)方法凈化的選礦廢水能過回收利用。文獻(xiàn)【14】和【15】中謝光炎和袁增偉的研究表明,凈化和經(jīng)活性炭處理后的廢水可以循環(huán)使用。另外,可以通過控制活性
5、炭的消耗來提高鉛浮選的效果。廢水處理和廢水在礦物加工中利用的研究已經(jīng)取得了很大成就。不過,他們只側(cè)重于技術(shù)的發(fā)展,而且對(duì)礦物浮選機(jī)理的研究也很少。截至目前,幾乎沒有關(guān)于選礦廢水的報(bào)道。廢水進(jìn)行分類和處理以后,根據(jù)其對(duì)不同礦物表面反應(yīng)的影響,回收到不同礦物的浮選中。這種方法可以提高效率,充分利用廢水中的化學(xué)物質(zhì),并大大降低成本。創(chuàng)造性地提出了根據(jù)循環(huán)水的特點(diǎn)利用循環(huán)水的理論。</p><p> 在項(xiàng)研究中,研究了
6、廢水對(duì)方鉛礦浮選和黃鐵礦浮選的影響,并對(duì)浮選試劑和礦物反應(yīng)機(jī)理進(jìn)行了討論。</p><p><b> 2試驗(yàn)</b></p><p><b> 2.1試驗(yàn)樣品</b></p><p> 本研究中用的方鉛礦,黃鐵礦樣采自凡口礦。這些礦物樣品粉碎至3mm以下,轉(zhuǎn)移到瓷器廠,用0.147-0.045mm篩子篩選獲得浮選樣本
7、。</p><p> 從生產(chǎn)現(xiàn)場(chǎng)直接取得污水樣本,獲得的污水需靜置一段時(shí)間,以去除其中的沉淀物。然后根據(jù)實(shí)驗(yàn)要求制的廢水樣本。對(duì)水的分析結(jié)果見表1和2。</p><p><b> 2.2浮選試驗(yàn)</b></p><p> 浮選實(shí)驗(yàn)在40ml槽式浮選機(jī)中進(jìn)行,攪拌速度為1600r/min。浮選過程中,將2.0g礦樣中加入1臺(tái)CQ50磁力泵中
8、,以去除表面的氧化物,然后將樣本進(jìn)一步處理。在實(shí)驗(yàn)中用的水為循環(huán)水。此外,需要的藥劑為調(diào)整劑、捕收劑和起泡劑。捕收劑、氣泡劑調(diào)節(jié)時(shí)間分別為2min和1min。浮選時(shí)間為4min。</p><p> 一克樣品沉浸在25ml捕收劑中,并且攪拌15min,然后靜置30min,過濾,干燥,得到固體。使用NEXUS的- 470紅外線光譜儀進(jìn)行紅外光譜測(cè)量。</p><p><b> 3
9、結(jié)果討論</b></p><p> 3.1選礦廢水對(duì)硫化礦浮選的影響</p><p> 廢水對(duì)方鉛礦和黃鐵礦浮選的影響,見圖1、圖2。</p><p> 圖1表明,在蒸餾水中,隨著礦漿PH的增大,方鉛礦的回收率降低。當(dāng)PH﹤8時(shí),方鉛礦回收率接近90%。當(dāng)PH增大到8~12時(shí),方鉛礦回收率從90%降到80%。很顯然,兩種回收水對(duì)方鉛礦浮選有不同的影
10、響。與蒸餾水相比,鉛精礦水可以提高方鉛礦浮選回收率,而硫精礦水則產(chǎn)生負(fù)面影響。</p><p> 從圖二可以看出,與蒸餾水相比,硫精礦水可以提高黃鐵礦浮選回收率,而鉛精礦水則降低浮選回收率。它表明,如果用鉛精礦水分離黃鐵礦和方鉛礦,則可提高分離效率。因此,在礦物加工過程中回收水的利用,必須具體問題具體分析。</p><p> 3.2硫化礦在廢水中浮選的紅外光譜測(cè)試</p>
11、<p> 分別在方鉛礦溶液和廢水中加入黃藥的紅外光譜測(cè)試見圖3。結(jié)果顯示,方鉛礦表面在三種水系統(tǒng)中有相似的高峰。在2955 cm-1 和 2870 cm-1 的吸收高峰有助于C—H鍵的對(duì)稱和不對(duì)稱伸縮。在1466 cm-1處產(chǎn)生峰值是由于—CH3或則—CH2的對(duì)稱彎曲振動(dòng)。在1405 cm-1處產(chǎn)生的峰值是由于—CH3的彎曲振動(dòng)。而1206cm-1和10
12、29cm-1的峰值是由于—CH3的拉伸振動(dòng)。C—O—C和—C =S分別產(chǎn)生吸收峰值。也可以從圖3中看到,在礦物加工廢水中,方鉛礦的表面吸收范圍跟廣,值更大。紅外測(cè)試結(jié)果還表明,在三種介質(zhì)中方鉛礦的紅外吸收強(qiáng)度為:鉛精礦水﹥蒸餾水﹥硫精礦水。這種現(xiàn)象的形成是由于鉛精礦水中含有殘余的捕收劑,有益于鉛黃藥的鉛的表面形成。也表明,捕收劑的作用與鉛表面的物理、化學(xué)反應(yīng)有關(guān)。結(jié)果是對(duì)浮選的一個(gè)很好的證實(shí)。</p><p>
13、 黃鐵礦在三種介質(zhì)中的三種紅外光譜見圖4??梢钥闯?,在2963 cm-1 和2880 cm-1</p><p> 存在著甲基和亞甲基的特征吸收峰。另外的特征吸收峰出現(xiàn)在1290cm-1和1033cm-1處,是由于C=S和C—O—C的伸縮性振動(dòng)而產(chǎn)生的。根據(jù)文獻(xiàn)【16】中徐靜等人做的研究,當(dāng)黃藥被氧化形成氧化黃藥時(shí),C=S拉伸振動(dòng)峰值從1049cm-1降低到1019cm-1,而C —O—C拉伸振動(dòng)增加到1240-
14、1290cm-1。這個(gè)結(jié)果與文獻(xiàn)報(bào)告及上面的浮選結(jié)果是一致的。這可以推斷出,紅外吸收強(qiáng)度是以硫精礦水﹥蒸餾水﹥鉛精礦水的順序排列的,與圖相符。</p><p> 3.3方鉛礦在廢水中浮選的電化學(xué)測(cè)試</p><p> 圖5顯示方鉛礦在不同廢水中與硝酸鉀作用的電極極化曲線。由計(jì)算機(jī)軟件處理見表3。很顯然,方鉛礦在腐蝕電位為50時(shí),反應(yīng)緩慢。方鉛礦在鉛精礦水和硫精礦水中的腐蝕電流密度分別為
15、0.973和1.421μA/cm2。結(jié)果還顯示,方鉛礦在廢水中電化學(xué)反應(yīng)與蒸餾水中相比較明顯改變,這與廢水中殘留的捕收劑密切相關(guān)。</p><p><b> 4結(jié)論</b></p><p> 1)鉛精礦水可以提高方鉛礦的浮選回收率,而硫精礦水對(duì)方鉛礦浮選產(chǎn)生負(fù)面影響。</p><p> 2) 紅外光譜表明,方鉛礦在選礦廢水中表面吸收特征峰
16、,是擴(kuò)大和加強(qiáng)的。方鉛礦在3種水中的紅外吸收強(qiáng)度順序是鉛精礦>水蒸餾水>硫精礦水。鉛精礦水里存在的殘余捕收劑有利于鉛黃藥在方鉛礦表面的形成。對(duì)于黃鐵礦,紅外吸收強(qiáng)度的順序是硫精礦水>蒸餾水>鉛精礦水。</p><p> 3)電化學(xué)測(cè)試結(jié)果表明,在廢水中,方鉛礦表面的反應(yīng)具有明顯的變化。陽極極化提高和陰極極化減弱。這一變化與廢水中殘余捕收劑息息相關(guān)。 </p>&l
17、t;p><b> 論文原文</b></p><p> Effect of mineral processing wastewater on flotation of sulfide minerals</p><p> CHEN Jian-ming(陳建明)1
18、, 2, LIU Run-qing(劉潤清)1, SUN Wei(孫 偉)1, QIU Guan-zhou(邱冠周)1</p><p> 1. School of Resource Processing and Bioengineering, Central
19、60;South University, Changsha 410083, China;</p><p> 2. Liuzhou China Tin Group Company, Limited, Liuzhou 545000, China.</p><p>
20、 Received 4 May 2008; accepted 20 September 2008</p><p> Abstract: The effects of mineral processing wastewater on sulfide mi
21、nerals were investigated by flotation, infrared spectrometry and electrochemistry test. The results show that lead-concentrate water can
22、0;improve the flotation of galena, while the sulfur-concentrate water has negative effect on flotation of galena compared with dis
23、tilled water. The flotation behavior of pyrite is contrary to that of galena in three kinds of water. Infrared spectra i
24、ndicate that the residual collector in the lea</p><p> Key words: mineral processing; sulfide mineral; recycled wastewater; flotat
25、ion </p><p> 1 Introduction</p><p> Water resource problem has become more and more important in the world because it
26、 is closely related to human life and environment. A lot of water has been consumed and wasted in mining to obtain
27、 metal resources. Wastewater discharged from mines takes 1/10 of the total amount of the industrial wastewater discharged in
28、60;China[1]. The wastewater produced in mineral processing contains a lot of suspended solid particles, heavy metal ions, flotation
29、0;reagents, organics and other pollutants etc, re</p><p> There are many reports about wastewater treatment and reuse in the
30、160;past[7-13]. It was shown that pellucid wastewater after physical and chemical purification could be recycled successfully. The
31、;studies of XIE et al [14] and YUAN et al [15] indicated that purified and</p><p> treated wastewater by activated c
32、arbon could be reused. Furthermore, the quality of Pb flotation could be improved by controlling activated carbon consumption. A
33、160;lot of researches have been done in wastewater treatment and utilization of mineral processing, and much achievement has been&
34、#160;made. However, they only focused on the technology development and the study on mineral flotation mechanism was rarely carrie
35、d out. Up to now, there are few reports about the mineral processing wastewater of diff</p><p> In this work, the
36、60;effects of mineral processing wastewater on flotation of galena and </p><p> pyrite are investigated and the reaction
37、;mechanism between reagents and mineral is discussed. </p><p> 2 Experimental </p><p> 2.1 Materials </p><p> Galena&
38、#160;and pyrite sample used in this study was from Pb/ Zn mine of Fankou. These mineral samples were crushed to below
39、 3 mm and removed to porcelain mill, then fraction of 0.147-0.045 mm was obtained by screening as flotation samples. &l
40、t;/p><p> The wastewater sample was taken from production site directly. The wastewater was settled for some time firstly
41、;in order to remove precipitated solids and then upper liquor was taken as flotation experimental water sample based on the&
42、#160;experiment requirements. Waste-water after treatment can represent wastewater sample of the site due to little solid particles and
43、 suspends. The analysis results of water are shown in Tables 1 and 2. </p><p> 2.2Flotation </p><p> Flotation&
44、#160;was conducted in a 40 mL hitch groove flotation machine at an rotating speed of 1600 r/min. In flotation process,
45、2.0 g mineral sample was added into a CQ50 type ultrasonic cleaner in order to remove the surface oxide, then the s
46、ample was transferred into the flotation cell for further processing. The water used in the process is recycled wastewater. T
47、he sequence of reagent addition was regulator, collector and frother. The conditioning times for collector and frother were 2
48、;min and 1</p><p> 2.3 Infrared spectrum examination </p><p> 1.0 g sample was immersed in 25 mL collector solution,&
49、#160;and mortar hand-ground for 15 min using an agate pestle, then settled for 30 min, filtrated, flushed 2-3 times using cor
50、responding recycled water. After vacuum drying, the solid was obtained. Infrared spectrumexamination was performed by reflect method in
51、 NEXUS-470 infrared spectrometer. </p><p> 3Results and discussion </p><p> 3.1Effects of mineral processing wastewater on flot
52、ation of sulfide minerals </p><p> To evaluate the effect of recycling mineral processing wastewater on flotation of galena
53、60;and pyrite,flotation experiments were conducted. The results are presented in Fig.1 and Fig.2. </p><p> Fig.1 shows that th
54、e recovery of galena decreases with the increase of pulp pH in the system of distilled water. When pH<8, the recov
55、ery is close to 90%. When pH increases from 8 to12, the recovery of galena decreases from 90% to 80%. It is cl
56、ear that two kinds of recycled wastewater have different effects on flotation of galena. Compared with distilled water,lead
57、0;concentrate water can improve the flotation of galena, while the sulfur concentrate water has negative effect on flotation</p>
58、<p> It can be seen from Fig.2 that, compared with the recovery in distilled water, the pyrite flotation is improved in
59、60;sulfur-concentrate water, but it is depressed in lead-concentrate water.This indicates that if lead-concentrate water is reused in &
60、#160;the separation of galena and pyrite, itcan enhance the separation efficiency. Therefore, in recycling of mineral processing water,
61、 theorigin of wastewater must be taken in to account.</p><p> 3.2 Infrared spectra of sulfide minerals in mineral
62、processing wastewater </p><p> The infrared spectra of galena in xanthate solution and in wastewater-xanthate solution are shown
63、160;in Fig.3. The results indicate that the surfaces of galena in three water systems give similar adsorption peak. Absorption
64、0;peaks of 2955 cm-1 and 2870 cm-1 contribute to the C—H asymmetry and symmetry stretching vibration.Peak at 1466 cm-1 is
65、0;derived from symmetry bend vibration of —CH3 or shear swing vibration of —CH2. Peak at 1405 cm-1 is caused by —CH3
66、0;bend vibration, and peaks of 1206 cm-1 and </p><p> Infrared spectra of pyrite interacted with three kinds of water
67、0;are present in Fig.4. It can be seen that there are characteristic absorption peaks of methyl and methylene at 2963 cm
68、-1 and 2880 cm-1. In addition, there appear characteristic absor-ption peaks at 1290 cm-1 and 1033 cm-1. They are caused
69、 by C=S and C—O—C stretching vibration of dixanthogen. According to XU et al[16] that C=S stretching vibration peak decre
70、ases from 1049 cm-1 to 1019 cm-1 and C —O—C stretching vibration i</p><p> 3.3 Corrosive electrochemistry of oxidization-
71、60;reduction of galena in mineral processing wastewater</p><p> Fig.5 shows the polarization curves for galena electrode in differe
72、nt mining recycled wastewater with 0.1 mol/L KNO3. Electrochemistry parameters by the computer PARcal are listed in Table&
73、#160;3. Obviously, galena corrosive potential moves by about 50 mV negatively. The corrosive current densities in lead-concentrate wa
74、ter and sulfur-concentrate water are 0.973 and 1.421 μA/cm2, respectively. The results indicate that, compared with the reaction i
75、n distilled water,the electrochemistry reac</p><p> 4Conclusions </p><p> 1) Lead-concentrate water can improve the flotation of
76、0;galena, while the sulfur concentrate water has negative effect on flotation of galena compared with distilled water.</p><p&
77、gt; 2) Infrared spectra indicate that surface absorption characteristic peak of galena is broadened and stronger in mineral processing
78、 wastewater. The order of infrared absorption intensity of galena in three kinds of water is lead-concentrate water > distill
79、ed water > sulfur- concentrate water . The residual collector in the lead- concentrate water is beneficial to the forma
80、tion of lead xanthate on the surface of galena. For pyrite, the order of infrared absorption intensity is sulfur- concen</
81、p><p> 3) Electrochemistry results indicate that electrochemistry reaction on galena sur-face in wastewater has apparent change. The
82、160;anode polarization is improved and cathode polarization is depressed. This change has relation with residual collector in wastewate
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響(原文)
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響(譯文)
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響(譯文).doc
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響(原文).pdf
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響(譯文).doc
- 外文翻譯--選礦廢水對(duì)硫化礦物浮選的影響(原文).pdf
- 化學(xué)氧化法處理鉛鋅硫化礦浮選廢水的研究.pdf
- 選礦回水中絮凝劑對(duì)鋁土礦浮選影響的研究.pdf
- 鉛鋅硫化礦浮選廢水生化深度處理中試研究.pdf
- 凡口選礦回水中鉛鋅硫化礦浮選基礎(chǔ)研究與工業(yè)實(shí)踐.pdf
- 臭氧法處理硫化礦選礦廢水的新工藝及其機(jī)理研究.pdf
- 硫化礦浮選廢水凈化與回用的新工藝研究.pdf
- 硫化礦浮選廢水中典型有機(jī)藥劑臭氧催化氧化去除研究.pdf
- 蒙自鉛鋅硫化礦選礦廢水的凈化處理與資源化利用研究.pdf
- 銅鋅硫化礦浮選分離研究.pdf
- 泡金山錫石硫化礦選礦試驗(yàn)研究.pdf
- 硫化礦浮選體系中滑石的分散研究.pdf
- 不同粒級(jí)鉛鋅硫化礦浮選特性研究.pdf
評(píng)論
0/150
提交評(píng)論