2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  鋁電解槽熱磁耦合問題數(shù)值模擬</p><p>  Y. Safa *, M. Flueck, J. Rappaz</p><p>  洛桑聯(lián)邦理工學(xué)院,分析與科學(xué)計算研究所,瑞士洛桑1015第8站</p><p>  2006年12月27日初稿;2008年2月4日修訂;2008年2月8日被收錄;2008年2月29日可網(wǎng)上搜索</p>

2、<p><b>  摘要</b></p><p>  本文運用一系列偏微分方程對鋁電解槽的熱磁耦合行為進(jìn)行了數(shù)值模擬。熱模型被認(rèn)為是一個由焦耳效應(yīng)引起的非線性對流擴(kuò)散熱方程組成的兩階段史蒂芬問題。該磁流體動力領(lǐng)域的主導(dǎo)是納維-斯托克斯方程和靜態(tài)麥克斯韋方程組。偽進(jìn)化組合(切爾諾夫)用于獲取電解槽仿真壁架的溫度和凝固層剖面的穩(wěn)態(tài)解。利用有限元方法的數(shù)值算法來獲取流體速度,電勢,磁

3、感應(yīng)和溫度。同時也利用了迭代算法和三維數(shù)值模擬結(jié)果。</p><p>  2008年愛思唯爾公司保留所有權(quán)利。</p><p>  關(guān)鍵詞:鋁電解;切爾諾夫組合;熱方程;磁流體力學(xué);壁架;凝固</p><p><b>  緒論</b></p><p>  本文研究了由電解槽熱磁耦合作用模型引起的相位變化問題。在一個利用霍

4、爾-埃魯特過程的冶煉池中,金屬部分是由三氧化二鋁電解融化在熔融冰晶石材質(zhì)的槽中制造而成的[1]。該電解槽中產(chǎn)生了多種現(xiàn)象,圖1為一個橫截面示意圖。</p><p>  電解槽中穩(wěn)定的電流通過鋁液在陽極和陰極棒之間產(chǎn)生。送到槽中的電流產(chǎn)生重要的磁場,該磁場連同電解槽中流通的電流共同產(chǎn)生一個維持這兩種導(dǎo)電液體耦合運動的拉氏力量作用域。電解槽中會產(chǎn)生磁流體動力學(xué)相互作用。另一方面,由槽體中的電阻率引起焦耳效應(yīng),熱源也隨

5、之產(chǎn)生。</p><p>  所謂的壁架在固態(tài)槽壁層上建立。這些壁架能夠避免電解槽側(cè)壁腐蝕性點解,并降低電解槽熱損耗(見[2]第23頁)。此外,它的輪廓嚴(yán)重影響磁流體動力穩(wěn)定性,引起鋁液和槽體接觸面振蕩,降低電流效率。因此最佳的層剖面是電解槽側(cè)壁設(shè)計的目標(biāo)之一。</p><p>  冶煉槽內(nèi)的熱凝固問題已經(jīng)被幾個專家解決[3-5]。據(jù)我們所知,在熱磁耦合上,該問題一直沒有被重視。本文的目的

6、是解決類似的耦合問題。我們期待,關(guān)于該問題的詳細(xì)資料記入在薩法論文集[6]。</p><p>  數(shù)學(xué)上,該問題解決了偏微分方程組、麥克斯韋方程組和納維-斯托克斯方程組的耦合系統(tǒng),其中,偏微分方程組包含由焦耳效應(yīng)引起的熱方程,麥克斯韋方程組以導(dǎo)電率作為溫度的函數(shù)。鋁液和和槽體之間的接觸面是未知的。壁架被認(rèn)為是電絕緣體,熱模型是靜止的兩階段史蒂芬問題。本文大綱如下:第2節(jié)介紹物理模型,第3節(jié)給出算法,第4節(jié)得出數(shù)值

7、計算結(jié)果。</p><p><b>  模型</b></p><p>  為了介紹該模型,我們首先描述一些幾何和物理量。</p><p><b>  2.1. 概括描述</b></p><p>  幾何圖形定義如圖1所示。下面介紹物理符號:</p><p><b>

8、 ?。毫黧w和固態(tài)層,</b></p><p><b> ?。弘姌O,</b></p><p><b> ?。罕硎倦娊獠鄣挠?lt;/b></p><p>  另外,我們定義如下接觸面:</p><p> ?。轰X液和槽體之間的自由接觸面,未知,</p><p>  ,

9、 1,2,</p><p><b> ?。弘姌O的外邊界。</b></p><p>  我們必須處理的未知物理場列舉如下:</p><p><b>  流體動力場:</b></p><p> ?。褐械牧魉賵?, 1,2,(固態(tài)層中為0),</p><p><b>

10、 ?。簤毫?。</b></p><p><b>  電磁場:</b></p><p><b> ?。捍鸥袘?yīng)場,</b></p><p><b>  :電場,</b></p><p><b> ?。弘娏髅芏取?lt;/b></p><

11、p><b>  熱場:</b></p><p><b>  :總熱能,</b></p><p><b> ?。簻囟取?lt;/b></p><p><b>  材料屬性定義如下:</b></p><p><b> ?。好芏龋?lt;/b>&

12、lt;/p><p>  與:槽體內(nèi)、外導(dǎo)電率,</p><p><b> ?。毫黧w粘度,</b></p><p><b> ?。嚎障秾?dǎo)磁率,</b></p><p><b>  :熱導(dǎo)率,</b></p><p><b> ?。罕葻崛荩?lt;/b

13、></p><p><b>  :潛熱。</b></p><p><b>  物理假設(shè)</b></p><p>  該模型需要以下基本假設(shè):</p><p>  1. 各流體不相融,不可壓縮,并且遵守牛頓定律。</p><p>  2.在每個域內(nèi),,= 1,2,各流體遵

14、守靜態(tài)納維-斯托克斯方程組。</p><p>  3.電磁場滿足靜態(tài)麥克斯韋方程組,此外,歐姆定律應(yīng)該在整個電解槽內(nèi)有效。</p><p>  4.槽外的電流密度已知(即陰極棒內(nèi)的電流)。</p><p>  5.導(dǎo)電率是液體和電極部分的溫度的函數(shù)。</p><p>  6.粘度,密度和比熱容與溫度無關(guān)。</p><p&g

15、t;  7.流體和固體的體積為給定值(質(zhì)量守恒)。</p><p>  8.電解槽中的流產(chǎn)生的焦耳效應(yīng)提供唯一的熱源。</p><p>  9.忽略化學(xué)反應(yīng)的影響[7],馬朗戈尼效應(yīng)[8,9],表面張力以及氣流的存在。</p><p><b>  流體動力學(xué)問題</b></p><p>  在這一部分,我們考慮溫度場和電

16、磁場,并且磁感應(yīng)場為已知。我們選擇的用的參數(shù)化形式表示鋁液和槽體間的未知接觸面,其中通常是一個與鋁陰極界面的參數(shù)化相對應(yīng)的矩形區(qū)域。考慮到,我們用表示,和的相互關(guān)系。</p><p>  根據(jù)假定7得出如下關(guān)系:</p><p>  , 其中表示鋁的體積。</p><p>  的單位法線指向,為。</p><p>  我們定義水動力場的標(biāo)準(zhǔn)方

17、程組如下:</p><p><b>  , (1)</b></p><p>  , (2)</p><p>  , (3)</p>

18、<p><b>  其中</b></p><p><b>  。</b></p><p>  這里(.,.)通常是R3的普通無向積。方程(1)-(3)對應(yīng)于第1和第2條假設(shè)。我們通過引進(jìn)包含流體的域、的邊界條件完成了上述方程組。對于任意場,表示穿過的的跳躍,即。各域中,和具體為:</p><p>  ,

19、 (4)</p><p>  , (5)</p><p>  。

20、 (6)</p><p>  中的流體部分只是所有域凝固前的一個子域。為了解決一個固定域中的流體動力學(xué)問題,我們使用包含懲罰函數(shù)的“虛擬域”方法。之后會定義液體和固體中的速度和壓力。我們將術(shù)語添加到納維-斯托克斯方程,是溫度函數(shù)的固相組分。函數(shù)由科澤尼定律給定:</p><p><b>  ,</b></p><p> 

21、 其中,為平均孔徑,為通過實驗確定的常量(見[10])。修改方程(1)為</p><p><b>  (7)</b></p><p>  液相狀態(tài)下為0,上述公式簡化為一般的納維-斯托克斯方程。相對于其他狀態(tài),糊狀區(qū)內(nèi)可能很大,并且上述方程模擬了達(dá)西定律:</p><p><b>  。</b></p>&l

22、t;p>  當(dāng)時,我們得到,并且固態(tài)區(qū)內(nèi)為0。</p><p>  最終得到流體動力學(xué)問題PHD:已知,和,求得,和,并且滿足以下條件</p><p><b>  , (8)</b></p><p>  , (9)</p>

23、<p>  , (10)</p><p>  , (11)</p><p>  ,

24、 (12)</p><p>  , (13)</p><p>  。 (14)</p&

25、gt;<p><b>  電磁問題</b></p><p>  我們假定速度場及溫度場已知。根據(jù)法拉第定律,我們令為0,電場由給定,其中表示在中計算得到的電勢場。我們?nèi)匀挥帽硎舅俣鹊倪B續(xù)延拓(在中為0),同時考慮到安培定律:令以及歐姆定律:在中,因此,我們給出電守恒定律:</p><p><b>  。</b></p>

26、<p>  我們用表示運算,其中是的外部單位法線。</p><p>  關(guān)于電勢,我們介紹以下邊界條件:</p><p><b>  ,</b></p><p><b>  ,</b></p><p><b>  ,</b></p><p>

27、  其中是已知的陽極外邊界電流密度。作為電流的一個函數(shù),磁感應(yīng)強(qiáng)度可以利用畢奧-薩伐爾關(guān)系求得:</p><p><b>  ,</b></p><p>  其中為由槽體外電流產(chǎn)生的某些磁感應(yīng)場。</p><p>  電磁問題PEM表達(dá)如下:和已知,通過以下公式求得,和</p><p>  ,

28、 (15)</p><p>  , (16)</p><p>  , (17)</p>

29、<p>  , (18)</p><p>  , (19)</p><p>  。

30、 (20)</p><p><b>  溫度問題</b></p><p>  我們假定流體動力場和電磁場已知。我們正在尋求的穩(wěn)定解將在這里作為一個隨時間變化的熱方程被求得。</p><p>  因此,在本小節(jié)我們介紹了進(jìn)化的熱模型。在對流擴(kuò)散問題中,凝固前(固液分界線)的位置事先未知,因此需要作為解法的一部分來確定。該問題被廣泛地稱為“史蒂芬

31、問題”,并且是高度非線性的。為了克服有關(guān)史蒂芬接觸面條件的非線性困難,我們定義一個焓函數(shù),它表示每單位體積的物質(zhì)的總熱量。焓可以用溫度,潛熱和固相分?jǐn)?shù)表示,即:</p><p>  。 (21)</p><p>  由于焓為單調(diào)函數(shù),我們引進(jìn)函數(shù),由以下關(guān)系定義:</p><p&

32、gt;  。 (22)</p><p>  函數(shù)是由在列表中的值經(jīng)過數(shù)學(xué)處理(插值法)計算得出的,上述列表值與由方程21得出的反比關(guān)系式相對應(yīng)。通過這種關(guān)系,我們可以將該問題表示成有關(guān)溫度和焓的史蒂芬問題,形式如下:</p><p>  ,

33、 (23)</p><p>  , (24)</p><p>  該問題是一個非線性對流擴(kuò)散系統(tǒng)。表達(dá)式用表示的數(shù)積,為僅由焦耳效應(yīng)提供的熱源。表達(dá)方式如下:</p>&

34、lt;p>  。 (25)</p><p>  考慮到分配性,溫度-焓規(guī)劃的優(yōu)勢就是仔細(xì)跟蹤固液界面消除位置的必要性,以及可以用標(biāo)準(zhǔn)數(shù)值技術(shù)來解決相變問題。</p><p>  溫度遵守羅賓邊界條件:</p><p>  ,

35、 (26)</p><p>  其中是在指向的單位外法線的方向?qū)?shù),是由空間和溫度決定熱傳遞系數(shù),是外界溫度。熱傳遞是由于對流和輻射。而輻射是由如下表達(dá)式間接考慮:</p><p>  其中,和是由通過實驗估算的正值。</p><p>  的初始條件是假定的。

36、</p><p>  對于一個給定的表示積分時間的標(biāo)量值,表達(dá)式如下:</p><p><b>  。</b></p><p>  溫度問題PTh表達(dá)如下:,和已知,通過以下公式求得和:</p><p>  , (27)</p><p&

37、gt;  , (28)</p><p>  , (29)</p><p>  。

38、 (30)</p><p><b>  完整問題</b></p><p>  我們剛剛描述了流體力學(xué),電磁和熱力學(xué)的問題。在每個具體域中,我們都假定其他域已知。</p><p>  我們要解決的問題就是找到同時滿足上述三個問題的速度,壓力,電勢,焓和溫度;函數(shù),,,,和均給定,并且已知常量,,,,,,和。</p>

39、<p><b>  數(shù)學(xué)方法</b></p><p>  上述的數(shù)學(xué)問題的數(shù)值解是基于一個迭代過程的,在迭代過程中,我們交替進(jìn)行未知的三種域的計算:流體域,電磁域和熱域。在本節(jié)中我們提出了PHD,PEM和PTh三種問題的迭代方案。包含用有限元法進(jìn)行空間離散的全局“偽進(jìn)化”算法被用來解決三域耦合問題。</p><p><b>  流體動力場計算&l

40、t;/b></p><p>  流體動力學(xué)問題通過迭代求解。在每一個求解步驟中,我們首先解決接觸面無正常受力平衡條件的固定形狀問題,然后利用非平衡法向力更新接觸面位置。解決替代應(yīng)用問題的兩個步驟如下:</p><p>  第一步:通過給定的幾何結(jié)構(gòu),并且考慮到接觸條件,解決流體動力學(xué)問題如下:</p><p><b>  ,</b><

41、;/p><p><b>  , 為的切向量,</b></p><p>  該問題之后會通過弱公式化簡單表達(dá)。</p><p>  第二步:更新接觸面位置,以便驗證接觸面所受法向力的平衡,通過以下表達(dá)式選擇:</p><p><b>  。</b></p><p>  這里我們用

42、表示的Oz軸的單位向量,用表示通過以下條件求得的常量:</p><p><b>  。</b></p><p>  利用迭代法計算,,,和,上述函數(shù)的函數(shù)值通過之前的迭代求得。</p><p>  設(shè)定和,并且通過下列表達(dá)式定義求解步驟:</p><p><b>  ,(31)</b></p&

43、gt;<p>  , (32)</p><p>  , (33)</p><p>  , 為的切向量, (34)</p><p>  ,

44、 (35)</p><p>  , (36)</p><p>  。 (37)</p><p>

45、  注意到這種算法的停止條件是基于的規(guī)范估計,它必須小于公差。</p><p><b>  電磁場計算</b></p><p>  磁感應(yīng)強(qiáng)度直接取決于電流,間接取決于位勢場,對于一個已知速度場我們要計算出這些電磁場的值。在求解的步驟中,我們用迭代法確定。迭代法中,利用公式(15)、邊界條件(16)-(18)和的值計算,利用公式(19)相繼計算。隨后,我們利用畢奧―薩

46、伐爾定律求得作為的函數(shù)的的值。</p><p><b>  求解步驟:</b></p><p>  , (38)</p><p>  , (39)

47、</p><p>  , (40)</p><p>  , (41)</p><p>  ,

48、 (42)</p><p>  。 (43)停止條件是基于的規(guī)范估計,它必須小于公差。</p><p><b>  熱場計算</b></p><p>  如前所述,我們用偽進(jìn)化類型作為收斂于溫度問題(27)-(30)穩(wěn)定解的

49、數(shù)學(xué)均值。</p><p>  在運用(27)-(30)時,利用半隱式法離散化得到:</p><p>  , (44)</p><p>  其中,,和為在時,和的值;為離散化的時間間隔。為了關(guān)閉系統(tǒng)(44),我們利用切諾夫方法,即:</p><p>  ,

50、 (45)</p><p>  其中是正松弛參數(shù)。通過在(44)中替換(45),我們得到一個計算時間時溫度的方法,即:</p><p>  , (46)</p><p>  只要滿足下列條件,該方法就是穩(wěn)定的[11]:</p><p><b&

51、gt;  。</b></p><p>  在上面的式子中,不是在時間時糊狀區(qū)溫度的良值,其良值可從中求得。為了避免可能出現(xiàn)的誤解,用表示前者。在時間離散化形式中,我們假定已知在時間區(qū)間內(nèi)的,另外用以下方法計算求解步驟中的,和:</p><p>  , (47)</p><p>  ,

52、 (48)</p><p>  , (49)</p><p>  。 (50)</p><p><b>  伽遼金構(gòu)想</b>&

53、lt;/p><p>  利用伽遼金構(gòu)想對三套方程組,以及進(jìn)行數(shù)值求解,該方法適用于在一個四面體網(wǎng)格上進(jìn)行一階分段多項式有限元法。圖.2表示用于計算的四面體網(wǎng)格。</p><p>  利用經(jīng)典的穩(wěn)定有限元法(見[12])對納維-斯托克斯問題進(jìn)行數(shù)值求解,用含一階分段多項式的標(biāo)準(zhǔn)有限元方法對位勢問題進(jìn)行數(shù)值求解。該小節(jié)中,我們把重點放在與熱問題相應(yīng)的有限元方法上。考慮到局部沛克萊數(shù)的大?。ㄔ诒纠?/p>

54、大約為1000),我們使用SUPG穩(wěn)定法(流線迎風(fēng)彼得羅夫-伽遼金格式)[13]。定義有限元空間</p><p><b>  ,</b></p><p>  其中用四面體表示網(wǎng)格重疊。與方程集(47)-(50)對應(yīng)的有限元由下列條件給定:找到滿足</p><p>  , (51)</p><p>  ,

55、 (52)</p><p>  , (53)</p><p>  其中表示網(wǎng)格和的插值,公式如下:</p><p>  ,

56、 (54)</p><p>  , (55)</p><p>  其中是的大小,變量為局部沛克萊數(shù)。我們分別用和表示時間間隔內(nèi)的導(dǎo)熱系數(shù)和傳熱系數(shù)。</p><p>  注。很明顯,焓在先驗未知的凝固前有一個突增,但我們可以用連

57、續(xù)函數(shù)子空間內(nèi)的近似取代。因此,該近似值表示了在一個精確焓值突增的小區(qū)間內(nèi)的焓值差。我們注意到,即使建立了很好的離散問題,逼近收斂于的焓近似值僅在規(guī)則下為真。</p><p><b>  數(shù)值計算結(jié)果</b></p><p>  我們使用廣義最小余數(shù)法解決流體動力學(xué)問題和溫度問題的矩陣系統(tǒng)。另一方面,由于與電場問題相關(guān)的該矩陣系統(tǒng)是對稱且正定的,我們利用代數(shù)多重網(wǎng)格法

58、AMG或共軛梯度法CG來解決該問題。 </p><p>  利用計算機(jī)(奔騰(R)4,CPU 2.80GHz,RAM 2GB)進(jìn)行磁-熱計算,10小時內(nèi)可獲得全局算法的收斂性。電勢計算相關(guān)結(jié)果見圖.3。圖.4顯示了槽內(nèi)溫度分布。壁架模型見圖.5。我們可清晰觀察到固化前一個小區(qū)間內(nèi)由SUPG穩(wěn)定法得出的相關(guān)數(shù)值擴(kuò)散的影響。值得指出的是,這張圖片與代表速度場的圖片(圖6)具有一致性,特別是壁架大的位置與各場中數(shù)值小的

59、位置也是一致的。</p><p>  很容易觀察到在液體分?jǐn)?shù)小于1的部分域內(nèi),速度場的數(shù)值計算結(jié)果符合達(dá)西定律。這表明,在流體動力學(xué)模型中,利用含有速度場懲罰值的“輔助域”方法是有效的。</p><p>  用多個元素對流體層沿深度進(jìn)行離散化,以便更準(zhǔn)確地表示流體動力場。另外如前所述,界面鋁-槽接觸面的節(jié)點可以沿垂直線移動,以保證了垂直受力平衡(見第3.1節(jié)第2步)。液體深度誤差的主要誤差

60、值是6%。在鋁-槽水平接觸面上,我們?nèi)〉米罡叩膶α餍Ч?,最佳壁架厚度見圖.5。</p><p>  保證總散熱量與內(nèi)部產(chǎn)熱量的一致性是很重要的。為了保證結(jié)果與槽穩(wěn)態(tài)條件相一致,關(guān)鍵是保證實現(xiàn)上述條件??偵崃康扔诟鞑糠郑ㄆ渲斜硎静壑须娏鞔┻^的各部分?jǐn)?shù)量)產(chǎn)生的焦耳熱之和:</p><p><b>  。</b></p><p>  總散熱量相當(dāng)

61、于槽邊界處的對流耗散:</p><p><b>  。</b></p><p>  焦耳總散熱量的數(shù)值誤差為2.5%。該誤差值相當(dāng)于槽切片內(nèi)使用有限元分析代碼進(jìn)行電熱計算的誤差,見[14]。</p><p>  使用另一種方法求得壁架模型。該方法依賴于無速度場的電熱計算。利用金屬槽體內(nèi)的人工導(dǎo)熱系數(shù)進(jìn)行對流效應(yīng)模擬。對比圖.5,求得對稱壁架如圖

62、.7所示,從而更易觀察固體壁架結(jié)構(gòu)內(nèi)速度場的影響。</p><p><b>  結(jié)論</b></p><p>  這項工作是在前人研究基礎(chǔ)上的延伸([15,16]),目的在于引出判斷霍爾-埃魯特電解槽內(nèi)流體運動穩(wěn)定與否的標(biāo)準(zhǔn)。</p><p>  在上面提到的參考文獻(xiàn)中,這些標(biāo)準(zhǔn)是從磁流體動力學(xué)線性方程組定態(tài)解的頻數(shù)分析得到的。它產(chǎn)生于 [15

63、] 和[16]中進(jìn)行的數(shù)值研究,這些標(biāo)準(zhǔn)的穩(wěn)定性在很大程度上依賴于求得的定態(tài)解的精確度。精確度不僅取決于正確的數(shù)值方法,也取決于電解槽特征表述與模型的妥善性。</p><p>  本文中,壁架模型和速度場的溫度分度影響已考慮在內(nèi)。</p><p>  通過觀察分析上述結(jié)果,得到以下結(jié)論:</p><p>  流體動力場的影響是一個決定電解槽熱行為的重要因素。從圖.5

64、和圖.7中可以看到,速度場對壁架形狀有很大的影響。</p><p>  忽略流體應(yīng)力張量對壁架的侵蝕作用完成的計算。該問題應(yīng)在將來解決。</p><p>  雖然處理多域相互作用問題有很大難度、幾何條件也很復(fù)雜,切爾諾夫方法在解決熱磁力耦合問題上很穩(wěn)定。</p><p>  最后,我們注意到,多個作者進(jìn)行了熱膨脹影響下的鋁電解槽鋼殼熱-機(jī)械形變研究[19-21]。在

65、這些研究中從未有熱磁耦合的計算。本文中所示溫度場計算對于之后由薩法等人(見[22])為展示熱對流對槽體結(jié)構(gòu)力學(xué)的影響以及速度場和鋼殼機(jī)械變形的相關(guān)性而進(jìn)行的彈性熱計算而言是富有成效的。</p><p><b>  致謝</b></p><p>  作者衷心感謝瑞士國家科學(xué)基金會和加拿大鋁業(yè)公司的支持。</p><p><b>  參考

66、文獻(xiàn)</b></p><p>  [1] P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, A. Sterten, J. Thonstad,鋁的電解霍爾He'roult基礎(chǔ)過程中,第三編。,鋁,出版社,2001。</p><p>  [2] K. Grjotheim, H. Kvande, 杜塞爾多夫生產(chǎn)霍爾Herlout過

67、程,1986.</p><p>  [3] V. Bojarevics, M. Dupuis, J. Freiberg, 示范熱電和磁流體的鋁500 kA的電解數(shù)學(xué)模型細(xì)胞在:第42屆會議的COM冶金,加拿大溫哥華,2003。</p><p>  [4] L. Consiglieri, M.C. Muniz, 自由邊界的存在性問題,在熱電造型的鋁溶液電解槽, 歐洲應(yīng)用數(shù)學(xué)學(xué)報14 (20

68、03) 201–216.</p><p>  [5] M.C. Muniz Castineira, Estudio matematico de un problema de Stefan relacionado con la modelizacion termoelectrica de cubas de electrolisis de aluminio, Universidade de Santiago de C

69、ompostela, Teses 編號 489, 1995.</p><p>  [6] Y. Safa, Simulation Nume′rique des phe′nome`nes thermiques et magne′tohydrodynamiques dans une cellule de Hall–He′roult, EPFL,</p><p>  Ph.D. 論文3185號,

70、 2005.</p><p>  [7] E.S. Filatov, V.A. Khokhlov, A. Solheim, J. Thonstad, 在cryolitic導(dǎo)熱融化中產(chǎn)生的新數(shù)據(jù)及其對鋁原子產(chǎn)生的影響, 輕金屬(1998) 501–506.</p><p>  [8] S.H. Davis, 熱毛細(xì)不穩(wěn)定, 流體力學(xué)年評19 (1987) 403–435.</p>

71、<p>  [9] S. Rolseth, A. Solheim, 一些表面和界面現(xiàn)象中遇到的鋁電解, 輕金屬, 挪威; 2001,469–474.</p><p>  [10] A. Bejan, D.A. Nield, 在多孔介質(zhì)對流, 斯普林格出版社, 1992.</p><p>  [11] A.E. Berger, H. Brezis, J.C.W. Rogers,

72、 一個解決問題的數(shù)學(xué)方法 ut  Mf euT ?0; RAIRO 數(shù)據(jù)分析 13 (4) (1979) 297–312.</p><p>  [12] E. Erik, A. Ern, 非線性擴(kuò)散和離散最大值原理的對流穩(wěn)定的Galerkin逼近–擴(kuò)散反應(yīng)方程, 應(yīng)用力學(xué)與工程系計算機(jī)方法 191 (2002) 3833–3855.</p><p>  [13] L.P. Franca,

73、 S.L. Frey, T.J.R. Hughes, 穩(wěn)定黑夜元方法: I. 適用于對流擴(kuò)散模型, 應(yīng)用力學(xué)與工程系計算機(jī)方法 95 (1992).</p><p>  [14] M. Dupuis (Ge′nisim Canada), 流程模擬, TMS 的鋁電解工業(yè), 1997.</p><p>  [15] M.V. Romerio, M.A. Secretan, 磁流體平衡電解槽鋁

74、, 計算機(jī)物理報告 3 (June II) (1986).</p><p>  [16] J. Descloux, M. Flueck, M.V. Romerio, 鋁電解槽穩(wěn)定建模. 非線性偏微分方程及應(yīng)用, 1998, Colle`ge de France Seminar, vol. XIII, Pitman 的數(shù)學(xué)研究札記,391.</p><p>  [17] D. Munger,

75、 Simulation nume′rique des instabilite′s magne′tohydrodynamiques dans les cuves de production de l’aluminium,De′partement de physique, Universite′ de Montre′al, Canada, Master thesis, 2004.</p><p>  [18] J.F

76、. Gerbeau, Problemes mathe′matiques et nume′riques pose′s par la mode′lisation de l’e′lectrolyse de l’aluminium, Ecole Nationale des</p><p>  Ponts et Chausse′es, France, Ph.D. thesis, 1998.</p><p

77、>  [19] M. Dupuis et al., 正極應(yīng)力模型, 輕金屬 (1991) 427–430.</p><p>  [20] M. Dupuis, I. Tabsh, 關(guān)于Hall–He′roult 原子預(yù)熱的熱應(yīng)力評價, in: Proceeding of the ANSYS, 6th 國際會議, vol. 1, 1994, pp. 3.13–3.23.</p><p&g

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論