版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> 中文4300字,2600單詞,1.4萬英文字符</p><p> 出處:Leiknes T, Ødegaard H, Myklebust H. Removal of natural organic matter (NOM) in drinking water treatment by coagulation–microfiltration using metal membrane
2、s[J]. Journal of Membrane Science, 2004, 242(1–2):47-55.</p><p><b> 外文資料</b></p><p> Removal of natural organic matter (NOM) in drinking water treatment by coagulation–microfiltrat
3、ion using metal membranes</p><p> Torove Leiknes, Hallvard Ødegaard, Håvard Myklebust</p><p><b> Abstract</b></p><p> Drinking water sources in Norway are c
4、haracterized by high concentrations of natural organic matter (NOM), low pH, low alkalinity and low turbidity. The removal of NOM is therefore in many cases a general requirement in producing potable water. Drinking wate
5、r treatment plants are commonly designed with coagulation direct filtration or with NF spiral wound membrane processes. This study has investigated the feasibility and potential of using inorganic metal microfiltration m
6、embranes in a submerge</p><p> Keywords: Natural organic matter、Coagulation–microfiltration、 Metal membranes</p><p> 1. Introduction</p><p> About 90% of Norwegian drinking water
7、 supplies are from surface water sources, generally from lakes which typically have very low turbidity, alkalinity and hardness but high colour resulting from natural organic matter (NOM). One of the major problems of us
8、ing surface water sources in northern climates is high content of NOM and total organic carbon (TOC). Removal of NOM is required since coloured water is unattractive to consumers, results in colouring of clothes during w
9、ashing, can cause odor </p><p> The most common drinking water treatment plant designs in Norway are based on coagulation and direct filtration or nanofiltration (NF) membrane filtration processes [13]. Coa
10、gulation direct filtration plants (enhanced coagulation) are still the dominant treatment plant design option.</p><p> In the last 10–15 years membrane processes based on nanofiltration (NF) using spiral wo
11、uld module configurations have been success- fully used in Norway for removing NOM, and approximately 100 membrane plants are in operation today. The NF membrane plants are commonly designed to operate with a constant fl
12、ux of ~17L m?2 h?1 (LMH) at a trans membrane pressure (TMP) of 3–6 bar with a water recovery of ~70%. Some of the disadvantages of the NF spiral wound membrane systems used are a relatively lo</p><p> Memb
13、ranes in drinking water treatment are commonly based on spiral wound systems or cross-flow hollow fiber/tubular systems. These membrane processes are pres- sure driven membrane modules and mounted in different array desi
14、gns to optimize the process. Energy costs required to pressurize the membrane vessels and maintain high enough fluid cross-flow velocities often is a substantial component of these systems. Submerged membrane designs
15、offer a new approach both to the membrane module design </p><p> The objective of this study has been to investigate the feasibility and potential of inorganic MF metal membranes combined with coagulation f
16、or the treatment of drinking water from highly coloured surface water. A low pressure sub- merged membrane module configuration was chosen combined with the coagulation pre-treatment. The metal mem- branes have been supp
17、lied by Hitachi Metals Ltd., Japan.</p><p> 2. Experimental</p><p> 2.1. Production of raw water</p><p> All the experiments in this study were conducted with feed water having a
18、 colour of 50 mg/L Pt at pH 7 which is typical and representative for Norwegian raw water sources. The feed water to the membrane reactor was prepared using a NOM concentrate from a full-scale ion exchange treatment pla
19、nt by mixing the concentrate into tap water to make up the desired composition. Analysis of the reconstructed water showed that the feed water is representative of the natural water source. Reconstructed fee</p>&
20、lt;p> The coagulant used was a polyaluminium chloride (PAX-16), aqueous solution from Kemira Chemicals AS. Preliminary coagulation tests were first conducted in jar-tests to find the optimum pH and coagula
21、nt dosage necessary to remove the NOM. Dosages of 2, 3, 4 and 5 mg/L Al were tested at the optimal pH of 6.3 ± 0.1 to determine the colour removal. Results revealed that a specific aluminium dosage of 5 mg/L Al remo
22、ved 94% of true colour, 87% of UV-absorbing compounds, and 71% of DOC [9]. </p><p> Flocculation of the feed water was done using a pipe flocculator to maintain a rapid development of the micro-flocs. The p
23、ipe flocculator was designed with a hydraulic retention time (HRT) of 30 s and a hydraulic gradient G of 400 s?1 . The suspended solids concentration in the feed water after coagulation/flocculation with a coagulant dose
24、 of 5 mg/L Al was around 25 mg/L SS.</p><p> 2.2. Membrane module specification</p><p> The metal membranes provided by Hitachi Metal Ltd. are made as sheets. Each sheet is constructed by sin
25、tering metal powder in a support layer to form the membrane. The nominal pore size of the membrane has been characterized using both the bubble point method and a particle size exclusion analysis. These methods determine
26、d the membrane having a nominal pore size of 0.95 and 0.2 m, respectively. As such the membrane can be classified as an “open” mi crofiltration membrane, however, the particl</p><p> The membrane module
27、was designed and built as a plate and frame system using a sandwich construction where an aluminium frame was designed to hold two membrane sheets on each side with a support layer inside [15]. The frame measurements w
28、ere; height 430 mm, length 270 mm, width 10 mm, giving an effective membrane surface area of 0.1596 m2 per module. For the initial investigation in this study only one membrane module was immersed in the membrane react
29、or and the total membrane area used in t</p><p> 2.3. Experimental configuration</p><p> The membrane reactor is a rectangular tank (h = 80 cm, w = 27 cm, l = 30 cm) where the membrane module
30、was positioned approximately 15 cm above the bottom. An arrangement for sludge extraction and sludge sampling was made in the bottom of the tank. A sampling point was also installed in the middle of the tank to extract r
31、epresentative samples of the concentrate in the membrane reactor. The permeate was extracted using a low pressure vacuum pump and stored in a permeate reservoir for backwashing.</p><p> 2.4. Experimental an
32、alysis</p><p> The performance of the membrane module was deter- mined by measuring the transmembrane pressure (TMP) for constant flux operation. The development of TMP for different fluxes was measured con
33、tinuously using an online pres- sure transducer connected to a data acquisition system from National Instruments, Field Point (FP1000 with FP-AI-110 analogue input), in combination with the LabVIEW 6.1 data acquisition a
34、nd analysis program. The water temperature was also logged continuously with a temperatur</p><p> The water treatment efficiencies were measured by analyzing the removal of colour, TOC, UV254 -absorbance, t
35、urbidity and suspended solids. Samples from the feed water stream, the concentrate in the membrane reactor, and in the permeate stream were analyzed. Analysis protocol followed Norwegian Standards. True colour and UV-abs
36、orption were determined with a Hitachi U-3000 UV–vis spectrophotometer. Colour was determined by measuring the absorbance of a sample at 410 nm in a 5 cm cell. UV absorptio</p><p> 2.5. Membrane cleaning pr
37、ocedure</p><p> The membrane was cleaned between each experiment and the cleaning procedure consisted of combining phys- ical and chemical procedures. The membrane reactor was first drained and filled with
38、clean water. The direction of permeate was reversed to backwash the membrane combined with vigorous air scouring for a period. Mechanical cleaning of the membrane was first employed by gently brushing the membrane surfac
39、e with a soft brush before rinsing. The membrane module was then soaked in a hypochlorite </p><p> 3. Conclusions</p><p> The initial results show that a MF process with coagulation pre-treatm
40、ent using metal membranes has a great potential for drinking water treatment. Coagulation pre-treatment with polyaluminium chloride (PAX-16) of raw water with a colour of 50 mg/L Pt revealed that a specific aluminium dos
41、age of 5 mg/L Al removed >95% of true colour, ~87% of UV-absorbing compounds, and 65–75% of DOC. A consistent high permeate quality was achieved for all experiments irrespective of operating modes investigated.</p&
42、gt;<p> The performance of the membrane system was found to be best when operated in a semi sequencing batch reactor mode. Two operating cycles consisting of a production period followed by extraction of excess s
43、ludge and a short cleaning period combining backwashing of the membrane with permeate and vigorous air scouring was investigated. The cycles applied consisted of a 10 min cycle (9.5 min production, 0.5 min cleaning) and
44、a 30 min cycle (29 min production, 1 min cleaning). Fluxes in the range of 2</p><p> Future work will include investigating alternative operating cycles, a better understanding of the effect of the cleaning
45、 cycles on the system performance, improving the membrane module design, designing a more efficient membrane reactor, and optimizing modes of operation to minimize membrane fouling.</p><p> Acknowledgements
46、</p><p> The authors would like to thank Hitachi Metals Ltd., Japan, for the support and supplying the metal membrane sheets, and Kemira Chemicals, Norway, for supplying the coagulants.</p><p>
47、<b> 中文譯文</b></p><p> 飲用水處理通過用金屬膜制成的凝固—微濾來去除天然有機(jī)物質(zhì)</p><p> Torove Leiknes, Hallvard Ødegaard, Havard Myklebust</p><p> 挪威科技大學(xué),水力和環(huán)境工程系</p><p> 說明:A
48、ndersensvel 5,N-7491 特隆赫姆,挪威</p><p><b> 摘要:</b></p><p> 在挪威的飲用水源的特點(diǎn)是天然有機(jī)物質(zhì)的濃度高,PH值低,堿度低,濁度低。因此在許多情況下用去除天然有機(jī)物質(zhì)的一般設(shè)備用來生產(chǎn)飲用水?!★嬘盟幚砉S一般是設(shè)計(jì)凝固系統(tǒng)直接過濾或與納濾膜纏繞膜過程。本研究調(diào)查顯示,在飲用水生產(chǎn)的配置有凝固系統(tǒng)的預(yù)處理
49、中使用無機(jī)金屬微濾膜的可行性和潛力。對(duì)操作模式和條件的變化進(jìn)行了測試,從無間歇的操作到使用空氣對(duì)膜進(jìn)行的周期式?jīng)_洗、反沖洗和污垢控制的半序列間歇式操作。大約180LMH的流量在膜壓力低于0.3bar下生產(chǎn)周期超過了50小時(shí)。處理效率一般顯示,可去除95%以上的色度、85%的紫外線、0.2NTU以下的濁度和在滲透中的可檢測的懸浮體。最初的結(jié)果表明,三聚氰胺-甲醛樹脂金屬薄膜是一個(gè)在處理飲用水的凝固/直流過濾中令人關(guān)注的砂濾替代物。<
50、/p><p> 關(guān)鍵詞:天然有機(jī)物質(zhì)、凝固—微濾 、金屬膜</p><p><b> 1、簡介</b></p><p> 大約90%的挪威飲用水的供給是由地表水源提供,一般是由擁有低濁、低堿度、低硬度且由于天然有機(jī)物引起的高色度的湖水供給。在北方的氣候下利用地表水源的其中一個(gè)主要問題是天然有機(jī)物和總有機(jī)碳的高濃度。必須去除天然有機(jī)物是因?yàn)橛猩?/p>
51、水吸引不了消費(fèi)者,它導(dǎo)致衣服在洗滌的時(shí)候被染色,產(chǎn)生氣味和口味,增加腐蝕和生物膜的變薄,是配電網(wǎng)絡(luò)的形成一種前兆時(shí)(DBP)消毒副產(chǎn)物水消毒。含天然有機(jī)物質(zhì)的濃聚物的飲用水的氯化,導(dǎo)致的鹵代化合物產(chǎn)生,已成為人們主要關(guān)心的問題。因?yàn)樵?0年代早期,人們發(fā)現(xiàn)氯化副產(chǎn)物是致癌的。在挪威,飲用水水源通??梢悦枋鰹楦呱?、低pH值和低堿度,作為典型值在表格中給出。因此,去除天然有機(jī)物質(zhì)是飲用水生產(chǎn)里的一個(gè)重要的處理手段,在那里,典型濃聚物由色度
52、30-80mg/L Pt減小到了少于10mg/L Pt。</p><p> 在挪威,最常見的飲用水處理廠的設(shè)計(jì)是基于凝固和直接過濾或納濾膜過濾過程(NF)[13]?;炷^濾工藝(強(qiáng)化混凝)仍然是主要的水處理工藝。</p><p> 在過去的10至15年,基于螺旋納濾膜(NF)基礎(chǔ)上的離子交換膜法,利用模塊配置已成功地用于挪威飲用水去除天然有機(jī)物,而大約有100種膜工藝今天仍在運(yùn)用。納濾
53、膜工藝一般在3-6bar的膜過濾壓差(TMP)、 21~ 17Lm的恒定流量 (LMH)下運(yùn)作,可使水的恢復(fù)達(dá)到70%。圖2舉例說明了螺旋型的納濾膜的一種典型的工藝設(shè)計(jì)和流程方案。螺旋型的納濾膜系統(tǒng)過去有一些缺點(diǎn),即相對(duì)較低的恢復(fù),操作壓力帶來的高能源消耗,天然有機(jī)物污染,次微米微粒導(dǎo)致需要清潔程序和按清潔規(guī)程[13、14]定期維護(hù)。在最近的關(guān)于不同處理工藝形式經(jīng)驗(yàn)的調(diào)查,使用膜處理水的經(jīng)營者和所有者通常對(duì)膜技術(shù)的使用非常滿意。然而,該
54、調(diào)查也表示有興趣的選擇膜處理裝置的設(shè)計(jì),更多的能量這將有助于通過高效污染控制減少必要的清洗頻率。兩種方法可以直接實(shí)現(xiàn):在納濾之前使用各種各樣的原水預(yù)處理或者采用納濾膜,不同類型的膜組件和操作選項(xiàng)。研究使用微濾(MF)、超濾(UF)膜以及膜組件設(shè)計(jì)(替代中空纖維橫流模塊和淹沒模塊)結(jié)合凝預(yù)處理,減少和控制污染已經(jīng)被報(bào)道過了[1]4 - 7,9 - 11]。當(dāng)應(yīng)用超濾(UF)、 微濾(MF)時(shí),混凝預(yù)處理</p><p&
55、gt; 膜在飲用水處理中通?;诼菪拖到y(tǒng)或橫流中空的纖維/管狀系統(tǒng)。這些膜分離過程處于膜組件的驅(qū)動(dòng)和裝在不同的陣列設(shè)計(jì)優(yōu)化過程的壓力下。能源成本的要求,試圖對(duì)膜血管并維持足夠高的液體橫流速度往往是這些系統(tǒng)的基本內(nèi)容。能源成本要求對(duì)膜血管增加并維持高足夠的液體橫流速度往往是這些系統(tǒng)的基本內(nèi)容。水膜設(shè)計(jì)提供了一種全新的一體式膜設(shè)計(jì)方法應(yīng)對(duì)膜組件的設(shè)計(jì)和低壓工況,可以有利于總能量的需求。一體式膜工藝設(shè)計(jì)結(jié)合混凝預(yù)處理被這一研究選為是一種直
56、接去除天然有機(jī)物的替代處理過程。由于這種膜有著化學(xué)和物理的強(qiáng)健性,無機(jī)金屬薄膜也被選中,考慮選擇的清洗污垢控制策略相比,與什么是可行的聚合物薄膜相比。</p><p> 本研究的目的是探討一種可行性,即無機(jī)微濾金屬膜結(jié)合凝固處理來自高色度的地表水的飲用水的潛力。低壓一體式膜的模塊化配置被選中與混凝預(yù)處理環(huán)節(jié)結(jié)合。金屬膜由日本的日立五金股份有限公司提供。 </p><p><b>
57、; 2、實(shí)驗(yàn)</b></p><p><b> 2.1、生產(chǎn)的原水</b></p><p> 本研究中所有的實(shí)驗(yàn)都在采用典型的、代表挪威原水,色度為50mg / L Pt ,pH= 7的給水。給水水膜反應(yīng)器中已經(jīng)準(zhǔn)備好使用大規(guī)模的集中了離子交換處理裝置的天然有機(jī)物濃縮液,通過把濃縮液混合進(jìn)進(jìn)自來水來組成理想的組分。分析表明,再生水顯示出給水代表著自然
58、水源。該實(shí)驗(yàn)中再生給水被選作維持同樣的初始條件進(jìn)行的所有實(shí)驗(yàn),這樣所有的性能在不同操作條件下就可以進(jìn)行評(píng)估和比較。鹽酸(HCl)被用于控制和調(diào)整pH值,以確保在凝固這一階段最佳pH為6.3±0.2。色度為50mg / L Pt的再生水擁有6.1 ± 0.25mg/L濃縮碳和31.1 ± 1.1m的紫外線254吸收率。</p><p> 使用的混凝劑是一種聚合氯化物(PAX-16),
59、從Kemira水溶液化學(xué)材料為。初步試驗(yàn)首先進(jìn)行了混凝震動(dòng)測試,找到移除NOM的最適酸堿度、混凝投藥量。在理想的酸堿值pH=6.3±0.1下,分別對(duì)劑量為2、3、4和5mg / L的鋁進(jìn)行了測試,至確定顏色去除。研究結(jié)果顯示,特定用量5mg / L的鋁能夠去除94%的真色,87%的UV吸收化合物,以及71%的DOC[9]。4-5mg / L的鋁并不使顏色去除量增加,然而,是使DOC的去除增多,同時(shí)該顆粒的電動(dòng)電勢形成。5mg
60、/ L劑量的鋁因此被選擇作為首選混凝劑投加量。隨劑量的增加,該顆粒的電動(dòng)電勢形成從-22mV增加到+ 5mV。該顆粒的電動(dòng)電勢的增長與導(dǎo)致電動(dòng)電勢的消極值的低劑量相比,也被認(rèn)為是有益。然而,在膜反應(yīng)器中,該顆粒的平均電動(dòng)電勢的周圍測定值-7.75±4.19mV。低值的發(fā)現(xiàn)可能是由于在膜反應(yīng)器中條件的不同例如污泥濃度、液壓和絮凝條件,然而,其測量值接近一個(gè)有利于聚集體形成的中性的電荷。因此,所有的實(shí)驗(yàn)進(jìn)行了在酸堿度約為6.3
61、177;0.2的膜反應(yīng)器中加混凝劑劑量為5mg/ L的鋁的給水處理。</p><p> 使用管道絮凝器維持一個(gè)飛速發(fā)展的微絮體完成了給水的絮凝。管道絮凝器設(shè)計(jì)水力停留時(shí)間(HRT)為30秒,水力梯度400。給水經(jīng)過混凝劑用量為5mg/L的鋁的混合/絮凝之后的懸浮物濃度在25mg/L SS左右。</p><p> 2.2、膜組件規(guī)范</p><p> 膜組件的
62、材料是由日立金屬有限公司提供的,并由金屬膜制成了薄板。每一個(gè)薄板都是由一個(gè)支撐層燒結(jié)金屬粉末形成的膜構(gòu)成的。通過使用泡點(diǎn)法和粒子篩選法來分析膜標(biāo)孔的特點(diǎn)。這些方法確定的膜的標(biāo)孔為0.95米和0.2米。這種膜可作為一個(gè)“開放"的微量過濾膜進(jìn)行分類,其中,粒度為0.2米孔徑最有可能代表膜的特點(diǎn)。</p><p> 膜組件的設(shè)計(jì)以及板框采用夾層結(jié)構(gòu)凡鋁框,目的是保證每一個(gè)內(nèi)部[15]支持層膜板邊由兩個(gè)系統(tǒng)建
63、成。據(jù)幀測量,高度為430公厘,長度為270毫米,寬度為10毫米,每個(gè)模塊提供一個(gè)表面積為0.1596平方米的有效的膜。研究初步調(diào)查,這條唯一的膜組件在膜反應(yīng)器中的膜面積和總使用面積為0.1596平方米。一個(gè)膜反應(yīng)器和膜組件模塊的原理圖如圖3所示。 </p><p><b> 2.3、實(shí)驗(yàn)配置</b></p><p> 該膜反應(yīng)器是一個(gè)長方形的容器(高= 80厘米
64、,寬= 27厘米,長= 30厘米),膜組件在距離底部位置約為15厘米以上的地方。提取污泥和污泥的采樣均安排在容器底。一個(gè)采樣點(diǎn)也安裝在容器中,他提取膜反應(yīng)器中集中的代表樣品。提取滲透液使用低真空壓力泵,并將滲透油儲(chǔ)存為反沖洗。一個(gè)真空泵能承受的最大值為0.5pa的三甲氧芐氨嘧啶,徹底清洗其中一個(gè)膜組件是必要的條件。安裝一種粗泡曝氣鼓風(fēng)機(jī)和通風(fēng)設(shè)備,控制空氣污染和膜的沖刷清洗。</p><p><b>
65、 2.4、實(shí)驗(yàn)分析</b></p><p> 實(shí)驗(yàn)分析了膜模塊的性能,目的是防止開采過程中由于跨膜壓力不斷變化對(duì)操作的影響。三甲氧芐氨嘧啶的發(fā)展是將傳感器連接到一個(gè)計(jì)算機(jī)輔助軟件,由于助熔劑的不同,需通過在線連續(xù)測量壓力。FieldPoint軟件可進(jìn)行系統(tǒng)數(shù)據(jù)采集(FP1000與FP -的AI - 110模擬輸入),并結(jié)合LabVIEW 6.1的數(shù)據(jù)采集和分析程序。溫度傳感器會(huì)不斷地記錄水溫。流速與
66、流量的測量通過手動(dòng)各自線轉(zhuǎn)子來統(tǒng)計(jì)。關(guān)于膜,膜的性能污染率通過計(jì)算滲透率來確定下降率,用跨膜壓力(長2M,寬2M,壓強(qiáng)1pa)除以歸通量來表達(dá)。通過消去顏色的分析進(jìn)行水處理效率的測量,經(jīng)TOC分析儀顯示所吸收的UV254,渾濁度以及去除的懸浮物。從水流中采集的樣本,在膜反應(yīng)器集中,并對(duì)滲透流樣本進(jìn)行分析。其次分析協(xié)議采用挪威標(biāo)準(zhǔn)。真彩色和UV的吸收測定了日立的U - 3000分光光度計(jì)。顏色是通過測量5厘米的細(xì)胞樣品在410 nm處的吸
67、光度。UV的吸收,是用1厘米的石英細(xì)胞定義在254納米中。通過催化濕式氧化(分析儀阿波羅9000)來分解或進(jìn)行有機(jī)碳(DOC)的測定。原水樣品是通過一個(gè)0.45米的賽多利斯硝酸鹽來分析過濾去除的顆粒物。用</p><p><b> 2.5、膜清洗程序</b></p><p> 通過膜清洗實(shí)驗(yàn)和彼此間的清潔程序相結(jié)合的物理、化學(xué)程序進(jìn)行膜清洗過程。該膜反應(yīng)器的第一排
68、干,用干凈的水填充。滲透方向相反的反沖洗膜以空氣與活力的聯(lián)合。膜清洗機(jī)械首次使用,需輕輕刷洗并在沖洗前軟刷膜的表面。用次氯酸鈉溶液浸泡膜組件一兩個(gè)小時(shí)(200毫克/升),以去除可能有吸附在金屬表面的污垢,接著用弱檸檬酸溶液浸泡,以消除所有的無機(jī)污垢和有機(jī)物。通過對(duì)干凈的水通量測量來確定清理檢查安泰程序的效率,重復(fù)對(duì)比較清潔的水通量測試,得出初步評(píng)估結(jié)果。</p><p><b> 3、結(jié)論</b
69、></p><p> 結(jié)論初步結(jié)果表明,與混凝物預(yù)處理過程中使用金屬膜中頻有很大的電位器用于飲用水處理?;炷坝镁酆下然X(百富- 16)50毫克/ L的原水為處理鉑,5毫克/ L的鋁取消“95%的真彩色,?87%的紫外線,吸收的化合物,以及65-75%的DOC。不論以何種實(shí)驗(yàn)操作模式來研究,質(zhì)量均連續(xù)達(dá)到了高滲透。通過密封操作和反沖洗以及空氣沖刷的變化,最初的研究表明,膜污染是可逆的,并且形成了主體系統(tǒng)
70、。這個(gè)主體系統(tǒng)層很容易被再次提出,膜與膜清洗廣泛的性能會(huì)恢復(fù)到初始狀態(tài)。膜系統(tǒng)性能最好的時(shí)候是在一個(gè)半序批式反應(yīng)器模式下運(yùn)行。提取剩余污泥和空氣大力沖刷膜,兩項(xiàng)依次循環(huán)操作組成了一個(gè)生產(chǎn)周期,對(duì)反沖洗后荒漠化問題進(jìn)行了研究。應(yīng)用的周期包括一個(gè)10分鐘周期(9.5分鐘生產(chǎn),0.5分鐘清洗)和一個(gè)30分鐘的周期(29分鐘生產(chǎn),1分鐘清潔)。低通熱量在200LMH和0.1?0.4paTMP范圍內(nèi)發(fā)展總是很容易實(shí)現(xiàn)。與30分鐘以上較低的污染相比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 飲用水處理中強(qiáng)化混凝去除有機(jī)物的試驗(yàn)研究.pdf
- 飲用水源中天然有機(jī)物特性表征及有機(jī)物強(qiáng)化去除工藝研究.pdf
- 混凝-微濾飲用水處理工藝的中試研究.pdf
- 飲用水中天然有機(jī)物和擬除蟲菊酯農(nóng)藥去除研究.pdf
- 膜吸附劑去除飲用水重金屬研究.pdf
- 不同濾料去除飲用水中三氮物質(zhì)的中試研究.pdf
- MIEX-COA工藝去除飲用水中有機(jī)物的研究.pdf
- 混凝-微濾工藝去除水中天然有機(jī)物的膜污染試驗(yàn)研究.pdf
- 飲用水常規(guī)處理工藝和活性炭吸附對(duì)有機(jī)物去除的研究.pdf
- 生活飲用水處理技術(shù)的發(fā)展
- 畢業(yè)設(shè)計(jì)(論文)沿黃城市飲用水有機(jī)物去除工藝研究
- 藻源有機(jī)物飲用水處理過程中AOC變化規(guī)律研究.pdf
- PMIA復(fù)合膜的制備及其去除飲用水中微有機(jī)污染物的研究.pdf
- 生活飲用水處理工藝探析
- 混凝-微濾膜工藝飲用水處理中試研究.pdf
- 納濾去除飲用水中有機(jī)物及類炭疽桿菌的研究doc
- 生物膜電極法處理飲用水源水中氨氮和有機(jī)物的研究.pdf
- 改性天然沸石去除飲用水中的砷和氟.pdf
- 膜組合工藝在飲用水處理中的應(yīng)用研究.pdf
- 混凝—微濾工藝制備飲用水的試驗(yàn)研究.pdf
評(píng)論
0/150
提交評(píng)論