畢業(yè)設(shè)計---智能掃描機(jī)械臺設(shè)計_第1頁
已閱讀1頁,還剩34頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  摘 要</b></p><p>  三軸雷達(dá)仿真轉(zhuǎn)臺是三軸轉(zhuǎn)臺的一種,本次設(shè)計的三軸雷達(dá)仿真轉(zhuǎn)臺主要用于某型機(jī)載雷達(dá)的測試。轉(zhuǎn)臺性能的優(yōu)劣直接關(guān)系到仿真和測試試驗(yàn)的可靠性,是保證某型機(jī)載雷達(dá)的精度和性能的基礎(chǔ)。本文針對三軸雷達(dá)仿真轉(zhuǎn)臺的機(jī)械結(jié)構(gòu)設(shè)計進(jìn)行了詳細(xì)的討論,并進(jìn)行了理論論證及必要的計算,同時對本轉(zhuǎn)臺中使用到的測量元件及聯(lián)軸器等其他原件的結(jié)構(gòu)及原理作了簡

2、單的介紹,設(shè)計中采用鑄鋁合金作為臺體的材料,實(shí)現(xiàn)了低轉(zhuǎn)速、高精度的要求,并且減輕了整體的重量,使機(jī)構(gòu)在滿足:轉(zhuǎn)角范圍、速度范圍、最大角加速度等設(shè)計參數(shù)要求的前提下,使結(jié)構(gòu)設(shè)計盡量優(yōu)化。本設(shè)計緊緊圍繞著設(shè)計任務(wù)書中的各項(xiàng)指標(biāo),從內(nèi)環(huán)開始至外環(huán)一步一步地展開設(shè)計。本文主要內(nèi)容包括轉(zhuǎn)臺的總體結(jié)構(gòu)論證、轉(zhuǎn)臺的詳細(xì)結(jié)構(gòu)設(shè)計、轉(zhuǎn)臺的誤差分析等。結(jié)合轉(zhuǎn)臺設(shè)計的特點(diǎn),本文重點(diǎn)討論了轉(zhuǎn)臺機(jī)械結(jié)構(gòu)的設(shè)計思想及設(shè)計過程。</p><p&g

3、t;  關(guān)鍵詞:三軸仿真轉(zhuǎn)臺;機(jī)載雷達(dá);測量元件;聯(lián)軸器:內(nèi)環(huán):中環(huán):外環(huán)。 </p><p><b>  ABSTRACT</b></p><p>  Three shafts radar simulation turntable is one type of the three shafts turntable . The three shafts radar

4、simulation turntable in this design is mainly used to test a certain type of airborne radar. The simulation turntable has great influence on the reliability and credence of experimentation,so the precision accuracy of a

5、certain type of airborne radar is based on simulation turntable.This paper discusses detailedly the design of mechanical structure of the three shafts radar simulation turnt</p><p>  Key words:;Three Axis s

6、imulation turntable;Airborne radar;Measuring element; Coupling;Inner ring;Central;Outer ring</p><p><b>  第1章 緒 論</b></p><p><b>  1.1 課題背景</b></p><p>

7、;  遠(yuǎn)古時代,人類的祖先面對著充滿神秘色彩的天空,編織出許多美麗、動人的神話、傳說故事。這些故事經(jīng)過無數(shù)代人的流傳,便真有了冒險者,不惜生命代價嘗試原始的飛行探險。</p><p>  1903年12月17日,萊特兄弟第一架動力飛機(jī)的試飛成功,使人類飛行的夢想變?yōu)楝F(xiàn)實(shí)。但是人類并沒有為此而滿足,他們將眼光瞄準(zhǔn)了更遙遠(yuǎn)的宇宙空間。1926年3月16日,美國人戈達(dá)德制成了世界首枚液體火箭。1957年蘇聯(lián)衛(wèi)星首次進(jìn)入

8、太空。1969年7月20日,阿波羅11號飛船登月成功。1981年4月12日,世界上第一架航天飛機(jī)哥倫比亞號發(fā)射。從此人類進(jìn)入了宇宙探險時代。最早,飛行器上天之前要用許多實(shí)物進(jìn)行實(shí)驗(yàn)研究,這樣不僅造成許多財力、物力、和人力的浪費(fèi),而且有限的實(shí)驗(yàn)所獲得的規(guī)律也不是十分的準(zhǔn)確,其中存在很大的偶然性。隨著人類航天活動的越來越頻繁,對設(shè)備的可靠性及經(jīng)濟(jì)性的要求也越來越高。尤其是近幾年來幾次重大的航天飛行事故促使人們對以往的實(shí)驗(yàn)手段進(jìn)行了深刻的反省

9、,開始了仿真測試設(shè)備的研究,仿真轉(zhuǎn)臺就是在這樣的背景下產(chǎn)生和發(fā)展起來的。二十世紀(jì)七十年代后,計算機(jī)尤其是數(shù)字計算機(jī)的發(fā)展為仿真技術(shù)提供了更高的技術(shù)基礎(chǔ)?,F(xiàn)在仿真轉(zhuǎn)臺已應(yīng)用到航空、航天設(shè)備的研制和測試的各個環(huán)節(jié)。</p><p>  1.2 智能掃描機(jī)械臺結(jié)構(gòu)設(shè)計的國內(nèi)外發(fā)展?fàn)顩r</p><p>  1.2.1 智能掃描機(jī)械臺的發(fā)展?fàn)顩r</p><p>  美國是

10、世界上最早研制和使用轉(zhuǎn)臺的國家,它的第一臺轉(zhuǎn)臺于1945年誕生于麻省理工學(xué)院。從那時起直到現(xiàn)在,美國的轉(zhuǎn)臺研制和使用,無論在數(shù)量、種類,還是在精度和自動化程度上都居于世界領(lǐng)先水平,代表了當(dāng)今世界轉(zhuǎn)臺的發(fā)展水平和方向。此外,英、法、德、俄等國也投入了大量的人力、財力進(jìn)行仿真轉(zhuǎn)臺的研究。但是以美國最為典型,下面主要以美國的轉(zhuǎn)臺研究和發(fā)展為例進(jìn)行介紹?;仡櫭绹D(zhuǎn)臺的發(fā)展過程,大體可以分為以下幾個階段:</p><p>

11、  第一階段的主要標(biāo)志:用機(jī)械軸承支撐臺軸,軸的驅(qū)動采用交流力矩電機(jī)。</p><p>  1945年,美國麻省理工學(xué)院儀表實(shí)驗(yàn)室研制成功世界上第一臺轉(zhuǎn)臺,開始了轉(zhuǎn)臺發(fā)展的第一個階段。此轉(zhuǎn)臺后來命名為A型臺,臺軸的支撐采用一般的滾珠軸承,軸的驅(qū)動直接用交流力矩電機(jī)完成。在A型臺的基礎(chǔ)上,于1950和1953年又相繼研制出了B型臺和C型臺。</p><p>  第二階段的主要標(biāo)志:采用液體靜

12、壓軸承支撐臺體,用支流力矩電機(jī)驅(qū)動軸系。</p><p>  1956年,美國開始研制液體靜壓軸承轉(zhuǎn)臺,并研制出了D型液體軸承臺,他的摩擦力矩僅為C型轉(zhuǎn)臺的1/8,有利于提高精度。</p><p>  從五十年代開始,除了麻省理工學(xué)院,美國還有一些公司也開始研制轉(zhuǎn)臺。如Carco公司于1967年生產(chǎn)了T-025、026和081型轉(zhuǎn)臺。Fecker公司于1964年和1965年先后生產(chǎn)了352

13、型、452型轉(zhuǎn)臺。</p><p>  1968年,E型臺的研制成功被認(rèn)為是美國轉(zhuǎn)臺發(fā)展的第二個階段。E型臺的主要材料是非磁性材料356號鋁,采用軸向和徑向帶有壓力補(bǔ)償?shù)囊后w軸承,并在耳軸上采用了空氣軸承。</p><p>  第三階段的主要標(biāo)志:采用計算機(jī)控制和測試自動化技術(shù)。</p><p>  從1968年到1969年Fecher公司生產(chǎn)了3768、3769型

14、單軸轉(zhuǎn)臺及5768、5569型雙軸轉(zhuǎn)臺,這期間一個引人注目的發(fā)展是這幾類轉(zhuǎn)臺均采用數(shù)字計算機(jī)進(jìn)行控制,其中5569型轉(zhuǎn)臺還可用數(shù)字計算機(jī)進(jìn)行自動測試,可工作在伺服、同步速率、輔助速率、數(shù)字位置、自動轉(zhuǎn)位及紙帶定位等狀態(tài)。</p><p>  1969年之后,美國的轉(zhuǎn)臺設(shè)計和制造進(jìn)入了系列化階段,技術(shù)得到發(fā)展和完善,相應(yīng)地轉(zhuǎn)臺也成為一種廣泛使用的測試設(shè)備。從那時起至今,位于賓西法尼亞洲匹茲堡的CGC公司成為美國制造

15、慣性導(dǎo)航測試設(shè)備和運(yùn)動模擬系統(tǒng)的主要廠商,并一直代表著美國乃至世界慣性設(shè)備,尤其是轉(zhuǎn)臺的發(fā)展水平。</p><p>  CGC公司于六十年代末至七十年代初研制了51系列轉(zhuǎn)臺,包括51A型、51C型、51D型、和51G型等。這一系列轉(zhuǎn)臺的主要特點(diǎn)是:臺體形式為雙軸臺,采用氣浮軸承。從七十年代初開始,CGC著手研制53系列多軸轉(zhuǎn)臺。先后研制成功了53B、53D、53E、53G、53W等型轉(zhuǎn)臺。53系列轉(zhuǎn)臺的主要特點(diǎn)是

16、:臺體形式均為多軸臺,普遍采用氣浮軸承,軸系回轉(zhuǎn)精度和正交精度均達(dá)到角秒級;使用感應(yīng)同步器作測角元件。CGC生產(chǎn)的51系列雙軸臺和53系列多軸臺在控制上均采用了MPACS30H系列模塊化精密角度控制系統(tǒng),這一系統(tǒng)的應(yīng)用是轉(zhuǎn)臺技術(shù)的重大發(fā)展。從此,轉(zhuǎn)臺進(jìn)入了計算機(jī)控制和測試自動化階段。</p><p>  1984年,CGC公司提出了改進(jìn)的三軸臺(Improved Three Axis Test Table,簡稱I

17、TATT)的制造方案。在CGC的設(shè)計制造方案中,規(guī)定ITTATT是一臺超精密三軸設(shè)備。ITATT三軸測試轉(zhuǎn)臺可用于艦船導(dǎo)航和空間傳感器的測試,還可用于戰(zhàn)略系統(tǒng)的測試。</p><p>  ITATT轉(zhuǎn)臺在制造方案中采用了新材料和許多新技術(shù)。</p><p>  在臺體材料與機(jī)械結(jié)構(gòu)方面,采用了石墨復(fù)合材料——碳纖維增強(qiáng)塑料級球形結(jié)構(gòu)改善了轉(zhuǎn)臺的對稱性及偏轉(zhuǎn)特性。</p>&l

18、t;p>  在軸承方面采用有緣磁懸浮軸承。</p><p>  在電機(jī)方面使用多相感應(yīng)式電機(jī)。用滾環(huán)代替滑環(huán),降低了摩擦力矩,提高了高速平穩(wěn)性和控制精度,同時提高了可靠性。</p><p>  在測角系統(tǒng)中,將感應(yīng)同步器和絕對光學(xué)編碼器結(jié)合使用。</p><p>  在控制方面,采用了數(shù)字狀態(tài)反饋技術(shù)為誤差補(bǔ)償創(chuàng)造了條件。</p><p&g

19、t;  采用了這些新技術(shù)之后,高精度三軸轉(zhuǎn)臺ITATT的技術(shù)指標(biāo)比以前的轉(zhuǎn)臺提高一個數(shù)量級以上。表1.1是幾種型號的三軸轉(zhuǎn)臺與ITATT的技術(shù)指標(biāo):</p><p>  表1.1 幾種型號的三T的技術(shù)指標(biāo)比較軸轉(zhuǎn)臺與ITAT</p><p>  1.2.2 國內(nèi)智能掃描機(jī)械臺的發(fā)展?fàn)顩r</p><p>  國內(nèi)自六十年代中期開始轉(zhuǎn)臺的研制工作,其發(fā)展?fàn)顩r大致如下:

20、</p><p>  1966年,707所開始研制DT-1型單軸低速轉(zhuǎn)臺,1974年進(jìn)行全面的精度測定,1975年通過鑒定。該臺由機(jī)械臺體和電子控制箱兩部分組成,采用氣浮軸承,交流力矩電機(jī)直接驅(qū)動,用感應(yīng)同步器和旋轉(zhuǎn)變壓器組成測角系統(tǒng)。</p><p>  1975年,303所研制成功了SFT-1.1型伺服臺,首次應(yīng)用光柵為精密測角元件。該伺服臺與美國Fecker公司生產(chǎn)的200型轉(zhuǎn)臺一樣

21、,可提供三種工作狀態(tài)。</p><p>  1979年,哈爾濱工業(yè)大學(xué)和原六機(jī)部6354所及441廠合作研制出我國第一臺雙軸伺服轉(zhuǎn)臺——TPCP-1型雙軸氣浮軸承臺,又稱7191雙軸臺。</p><p>  1982年,6354所研制成了7191-Ⅱ型雙軸臺,該臺是在7191轉(zhuǎn)臺的基礎(chǔ)上研制的,提高了可靠性。</p><p>  1983年,航天部一院13所研制了S

22、SFT型雙軸伺服臺,該轉(zhuǎn)臺是我國最大的雙軸伺服臺。</p><p>  1984年,哈工大與6354所共同承擔(dān)了計算機(jī)控制雙軸轉(zhuǎn)臺,即CCGT雙軸轉(zhuǎn)臺的研制任務(wù),1988年研制成功。該臺是我國第一臺計算機(jī)控制的雙軸臺。</p><p>  1985年,由哈工大研制的DPCT型單軸計算機(jī)控制轉(zhuǎn)臺是我國第一臺計算機(jī)控制的轉(zhuǎn)臺。</p><p>  1990年,中國航空精

23、密機(jī)械研究所研制成功了SGT-1型三軸捷聯(lián)慣導(dǎo)測試轉(zhuǎn)臺。這是我國第一臺計算機(jī)控制的高精度三軸慣導(dǎo)測試臺。</p><p>  在轉(zhuǎn)臺的開發(fā)和制造領(lǐng)域,中國和世界先進(jìn)水平相比還有許多差距,例如,對于轉(zhuǎn)臺相關(guān)的技術(shù)缺乏深入系統(tǒng)的研究,導(dǎo)致了生產(chǎn)的轉(zhuǎn)臺可靠性差,也沒有批量生產(chǎn)的能力;在一些領(lǐng)域存在空白等。</p><p>  1.2.3 未來轉(zhuǎn)臺的發(fā)展趨勢</p><p&g

24、t;  不斷應(yīng)用新技術(shù)來提高轉(zhuǎn)臺的測試精度,增強(qiáng)轉(zhuǎn)臺的穩(wěn)定性及環(huán)境適應(yīng)性是[3]未來轉(zhuǎn)臺發(fā)展的主要趨勢。具體為:</p><p>  進(jìn)一步提高技術(shù)指標(biāo);</p><p><b>  實(shí)現(xiàn)測試自動化;</b></p><p>  加強(qiáng)各種環(huán)境下的測試,控制環(huán)境對測試精度的影響,如溫度、壓力、地基等的影響。</p><p>

25、;  對測試的可靠性、穩(wěn)定性提出進(jìn)一步的要求。</p><p>  同時,由于轉(zhuǎn)臺的應(yīng)用越來越廣泛并逐漸向商品化發(fā)展,使得轉(zhuǎn)臺的研制在保證精度的前提下不斷的應(yīng)用新材料和新工藝以降低成本,這也成為未來轉(zhuǎn)臺發(fā)展的一大趨勢。</p><p>  1.3 立題的目的和意義</p><p>  本轉(zhuǎn)臺主要用于測試機(jī)載雷達(dá)跟蹤目標(biāo)的靈敏性,模擬雷達(dá)在跟蹤動態(tài)目標(biāo)時的現(xiàn)場實(shí)際運(yùn)

26、動情況。它在機(jī)載雷達(dá)的研制和實(shí)驗(yàn)室測試方面具有不可替代的作用。</p><p><b>  本文主要工作</b></p><p>  本論文主要將完成對智能掃描機(jī)械臺的總體設(shè)計,對智能掃描機(jī)械臺機(jī)械結(jié)構(gòu)的詳細(xì)設(shè)計:對內(nèi)中外三環(huán)的轉(zhuǎn)矩的計算與三軸各軸電機(jī)的轉(zhuǎn)矩校核,根據(jù)本次設(shè)計的相關(guān)技術(shù)要求對本轉(zhuǎn)臺的誤差分析。</p><p>  第2章智能掃描

27、機(jī)械臺總體設(shè)計</p><p>  2.1 轉(zhuǎn)臺技術(shù)要求</p><p>  轉(zhuǎn)臺總體設(shè)計是轉(zhuǎn)臺設(shè)計中的關(guān)鍵環(huán)節(jié),它對轉(zhuǎn)臺所能達(dá)到的技術(shù)性能和經(jīng)濟(jì)性起著決定性的作用。本次設(shè)計所要達(dá)到的技術(shù)要求如下:</p><p><b>  1.負(fù)載尺寸:</b></p><p>  2.負(fù)載重量:150kg </p>

28、<p>  3.轉(zhuǎn)角范圍:內(nèi)環(huán)±90°,中、外環(huán)±45°</p><p>  4.最大角速度:內(nèi)環(huán)300°/s、中環(huán)180°/s、外環(huán)160°/s</p><p>  5.最小角速度:內(nèi)環(huán)0.003°/s、中環(huán)0.003°/s、外環(huán)0.003°/s</p><

29、p>  6.最大角加速度:內(nèi)環(huán)500°/s2、中環(huán)180°/s2、外環(huán)180°/s2</p><p>  7.三軸轉(zhuǎn)角精度:0.003°</p><p>  8.三軸相交度:0.5mm </p><p>  9.視場角:±45°</p><p>  10.雙十頻響指標(biāo):內(nèi)環(huán)4H

30、z,中、外環(huán)3Hz</p><p>  2.2 總體設(shè)計流程</p><p>  根據(jù)機(jī)械設(shè)計總體設(shè)計的一般規(guī)律及智能掃描機(jī)械臺的特點(diǎn),智能掃描機(jī)械臺總體設(shè)計流程如圖2.1:</p><p>  圖2.1 轉(zhuǎn)臺總體設(shè)計流程圖</p><p>  2.3 轉(zhuǎn)臺類型的確定</p><p>  智能掃描機(jī)械臺根據(jù)其方位軸

31、系和滾動軸系所在位置的不同,分為立式和臥式兩種類型。立式轉(zhuǎn)臺外環(huán)是方位軸系,內(nèi)環(huán)是滾動軸系;臥式轉(zhuǎn)臺與立式轉(zhuǎn)臺相反,外環(huán)是滾動軸系,內(nèi)環(huán)是方位軸系。根據(jù)本次轉(zhuǎn)臺設(shè)計的技術(shù)指標(biāo),內(nèi)環(huán)轉(zhuǎn)角范圍為±90°,而中、外環(huán)轉(zhuǎn)角范圍為±45°,所以內(nèi)環(huán)應(yīng)為滾動軸系。因此我們選用立式轉(zhuǎn)臺。</p><p>  根據(jù)驅(qū)動裝置的不同,轉(zhuǎn)臺又可分為液壓驅(qū)動轉(zhuǎn)臺、電動轉(zhuǎn)臺和電液混合驅(qū)動轉(zhuǎn)臺。液壓驅(qū)

32、動自身存在線性度差、轉(zhuǎn)角小、低速性能差、維護(hù)復(fù)雜等許多缺點(diǎn)。而本設(shè)計要求的轉(zhuǎn)速范圍為:內(nèi)環(huán)0.003°/s~300°/s、中環(huán)0.003°/s~180°/s、外環(huán)0.003°/s~160°/s。顯然,低速性能要求較高,液壓驅(qū)動不能滿足要求,所以我們選擇電力驅(qū)動。</p><p>  綜上,我們選用立式電動轉(zhuǎn)臺。</p><p> 

33、 2.4 轉(zhuǎn)臺運(yùn)動功能設(shè)計</p><p>  2.4.1 工作原理</p><p>  智能掃描機(jī)械臺的三個軸都由電機(jī)直接驅(qū)動,通過改變電機(jī)電流來改變各軸的轉(zhuǎn)速,通過一個峰值電流來實(shí)現(xiàn)電機(jī)的最大加速度。各電機(jī)的啟停及通過各電機(jī)的電流由接收到的外部信號控制,從而使轉(zhuǎn)臺上的負(fù)載能夠跟蹤信號的運(yùn)動。</p><p>  2.4.2 運(yùn)動功能方案</p>

34、<p>  轉(zhuǎn)臺運(yùn)動功能圖如圖2.2所示,內(nèi)環(huán)、中環(huán)和外環(huán)均由電機(jī)驅(qū)動,外環(huán)實(shí)現(xiàn)方位運(yùn)動、中環(huán)實(shí)現(xiàn)俯仰運(yùn)動、內(nèi)環(huán)實(shí)現(xiàn)滾轉(zhuǎn)運(yùn)動。</p><p>  圖2.2 轉(zhuǎn)臺運(yùn)動功能圖</p><p>  2.5 轉(zhuǎn)臺總體布局設(shè)計</p><p>  根據(jù)技術(shù)指標(biāo),考慮到負(fù)載尺寸較大,為了盡可能降低轉(zhuǎn)臺慣量,提高轉(zhuǎn)臺的響應(yīng)速度,我們將內(nèi)環(huán)軸設(shè)計為中空,負(fù)載直接安

35、裝在內(nèi)環(huán)軸的中空部位。在盡可能減小轉(zhuǎn)臺中環(huán)慣量的同時,為了保證中環(huán)剛度,我們將中環(huán)框架設(shè)計為與內(nèi)環(huán)(滾動軸)同心的圓筒結(jié)構(gòu),這種結(jié)構(gòu)具有結(jié)構(gòu)剛度高、工藝性好等優(yōu)點(diǎn),且能實(shí)現(xiàn)盡量小的轉(zhuǎn)動慣量。由于本轉(zhuǎn)臺整體結(jié)構(gòu)較大,同時為了保證中環(huán)框架的正確安裝,我們將外環(huán)框架設(shè)計為分體式薄壁箱結(jié)構(gòu),這一結(jié)構(gòu)可以在達(dá)到最小質(zhì)量的情況下實(shí)現(xiàn)最大的結(jié)構(gòu)剛度。綜上所述,本轉(zhuǎn)臺的總體結(jié)構(gòu)我們采用立式O-O-U結(jié)構(gòu)形式。其總體布局如圖2.3所示</p>

36、<p>  圖2.3 智能掃描機(jī)械臺總體布局圖</p><p>  2.6 轉(zhuǎn)臺主要參數(shù)設(shè)計</p><p>  本轉(zhuǎn)臺負(fù)載安裝于內(nèi)環(huán)軸孔中,負(fù)載尺寸為,所以內(nèi)環(huán)軸徑由負(fù)載尺寸決定也為。內(nèi)環(huán)軸壁厚尺寸,考慮其剛度,結(jié)合經(jīng)驗(yàn)暫定為23mm,由于轉(zhuǎn)臺設(shè)計的特殊性,其它結(jié)構(gòu)尺寸均與前一步結(jié)構(gòu)設(shè)計的結(jié)果直接相關(guān),所以暫無法確定。</p><p><b&

37、gt;  2.7 本章小結(jié)</b></p><p>  在本章設(shè)計中,根據(jù)此次設(shè)計的技術(shù)要求,完成了本設(shè)計的總體設(shè)計流程,確定了轉(zhuǎn)臺的類型為O-O-U型;根據(jù)轉(zhuǎn)臺的運(yùn)動原理,設(shè)計出它的運(yùn)動功能方案,三軸均為直接驅(qū)動;根據(jù)技術(shù)指標(biāo),考慮轉(zhuǎn)臺的負(fù)載尺寸,確定負(fù)載過渡盤厚度為23mm,設(shè)計轉(zhuǎn)臺的總體布局為立式。</p><p>  第3章 智能掃描機(jī)械臺機(jī)械結(jié)構(gòu)詳細(xì)設(shè)計</

38、p><p>  詳細(xì)設(shè)計主要完成轉(zhuǎn)臺的內(nèi)部機(jī)械結(jié)構(gòu)設(shè)計,包括轉(zhuǎn)臺內(nèi)環(huán)結(jié)構(gòu)設(shè)計、中環(huán)結(jié)構(gòu)設(shè)計、外環(huán)結(jié)構(gòu)設(shè)計以及軸承、聯(lián)軸器、電機(jī)和測量元件的選擇。轉(zhuǎn)臺機(jī)械結(jié)構(gòu)詳細(xì)設(shè)計流程如圖3.1所示</p><p>  圖3.1 轉(zhuǎn)臺結(jié)構(gòu)詳細(xì)設(shè)計流程圖</p><p>  3.1 轉(zhuǎn)臺內(nèi)環(huán)結(jié)構(gòu)設(shè)計</p><p>  內(nèi)環(huán)結(jié)構(gòu)設(shè)計是轉(zhuǎn)臺設(shè)計的第一步,因此也是設(shè)

39、計的關(guān)鍵一步。內(nèi)環(huán)結(jié)構(gòu)設(shè)計所要解決的關(guān)鍵技術(shù)問題是:全中空軸系設(shè)計及負(fù)載的安裝界面設(shè)計。</p><p>  3.1.1 結(jié)構(gòu)設(shè)計</p><p>  內(nèi)環(huán)軸系的結(jié)構(gòu)設(shè)計如圖3.2所示,軸系轉(zhuǎn)子為內(nèi)環(huán)軸(內(nèi)環(huán)框架),負(fù)載安裝在內(nèi)環(huán)軸的后端,由于負(fù)載尺寸較大,在內(nèi)環(huán)軸的后端增加一負(fù)載過渡盤,輔助支撐負(fù)載,內(nèi)環(huán)波導(dǎo)座位于負(fù)載過渡盤的頂端。內(nèi)環(huán)軸系的支撐采用鋼絲滾道軸承,由于內(nèi)環(huán)軸的軸向尺寸較

40、大,為了保證軸的剛度,我們除了在軸的前端用一鋼絲滾道軸承作為主支撐外,在軸的后端再增加一鋼絲滾道軸承作為輔助支撐。內(nèi)環(huán)驅(qū)動電機(jī)安裝在軸系前端,電機(jī)轉(zhuǎn)子用螺釘與內(nèi)環(huán)軸相聯(lián),這種布置一方面可以擴(kuò)大視場角,另一反面可以最大限度的起到靜力矩平衡的作用。內(nèi)環(huán)測角元件為感應(yīng)同步器。</p><p>  內(nèi)環(huán)定子與中環(huán)框架作成一體。這樣既可以使結(jié)構(gòu)緊湊,又可以實(shí)現(xiàn)更高的系統(tǒng)剛度和精度。</p><p>

41、  圖3.2 內(nèi)環(huán)軸系結(jié)構(gòu)圖</p><p>  本轉(zhuǎn)臺各軸系均為局部轉(zhuǎn)角,系統(tǒng)超限保護(hù)均為三級保護(hù),其順序?yàn)檐浖Wo(hù)、光電開關(guān)保護(hù)和機(jī)械限位,其中機(jī)械限位均有橡膠緩沖裝置。</p><p>  3.1.2 轉(zhuǎn)矩計算</p><p>  理論力學(xué)定義[3]剛體的轉(zhuǎn)動慣量是剛體轉(zhuǎn)動時慣性的度量,它等于剛體內(nèi)各質(zhì)點(diǎn)的質(zhì)量與質(zhì)點(diǎn)到軸的垂直距離平方的距離之和,即</

42、p><p><b>  (3.1)</b></p><p>  由式3.1可見,轉(zhuǎn)動慣量的大小不僅與質(zhì)量大小有關(guān),而且與質(zhì)量的分布情況有關(guān)。因此對于結(jié)構(gòu)不規(guī)則的復(fù)雜零件,用式3.1計算轉(zhuǎn)動慣量就顯得非常復(fù)雜。由理論力學(xué)知識我們可以得出轉(zhuǎn)動慣量的又一計算公式</p><p><b> ?。?.2)</b></p>

43、<p>  式中——慣性半徑(或回轉(zhuǎn)半徑)。</p><p>  由式3.2可見,只要我們知道零件的回轉(zhuǎn)半徑和質(zhì)量就可以方便地計算出零件的轉(zhuǎn)動慣量。在機(jī)械制圖軟件AutoCAD的“工具”菜單中有一“查詢——面域/質(zhì)量特性”命令,此命令可以直接生成三維零件的質(zhì)量及回轉(zhuǎn)半徑。利用此命令我們就可以很方便地計算出零件的轉(zhuǎn)動慣量。本次設(shè)計所有關(guān)于轉(zhuǎn)動慣量的計算都是使用此方法來完成的。</p><

44、;p>  零件轉(zhuǎn)矩與轉(zhuǎn)動慣量的關(guān)系見式3.1</p><p><b>  (3.3)</b></p><p>  式中——零件角加速度。</p><p>  表3.1 繞內(nèi)環(huán)轉(zhuǎn)動零件數(shù)據(jù)</p><p>  內(nèi)環(huán)軸系各零件質(zhì)量及轉(zhuǎn)動慣量計算結(jié)果如表3.1所示</p><p><b>

45、;  轉(zhuǎn)矩:Nm</b></p><p>  3.1.3 軸向固定方式的選擇</p><p>  選擇驅(qū)動系統(tǒng)的軸向固定方式時,要考慮作用在軸上的軸向力是怎樣通過軸承傳遞到箱體或支座上去的,零部件軸向固定是否可靠,不能靠過渡配合來承受軸向力。</p><p>  當(dāng)軸向力很小時,可采用擋圈、彈性擋圈、緊定螺釘、銷等實(shí)現(xiàn)軸向固定。當(dāng)軸向力較大時,應(yīng)采用軸肩

46、、軸環(huán)、套筒、圓螺母、軸端壓板、圓錐面等進(jìn)行軸向固定。</p><p>  為了防止軸承內(nèi)座圈與軸發(fā)生相對軸向位移,內(nèi)座圈與軸通常需要在兩個方向上進(jìn)行軸向固定。</p><p>  4. 對于工作溫度不高、兩個支承之間的距離較小的軸來說,可以采用兩端固定,使每一個支承都能限制軸的單向移動,兩個支承合在一起就能限制軸的雙向移動。對于工作溫度較高、兩個支承之間的距離較大的軸來說,應(yīng)采用一端固定

47、一端游動的方法,使一個支承限制軸的雙向移動,另一個支承游動。</p><p>  5. 對于能承受雙向軸向載荷的軸承組合結(jié)構(gòu),安裝時可以對軸承進(jìn)行預(yù)緊,消除間隙,并使?jié)L動體與內(nèi)外座圈之間產(chǎn)生預(yù)變形,這樣可以提高軸承的剛度和旋轉(zhuǎn)精度,減小軸在工作時的振動。對于用來承受雙向軸向載荷的單個軸承,其間隙不能在安裝時通過預(yù)緊來消除。</p><p>  6.為了簡化結(jié)構(gòu)、減小軸向尺寸、減輕重量,大、

48、中型雷達(dá)的方位轉(zhuǎn)臺可以采用帶內(nèi)齒輪或外齒輪的特大型軸承,該軸承能承受徑向力、雙向軸向載荷和傾覆力矩,其內(nèi)、外座圈與轉(zhuǎn)臺有關(guān)部分通常采用螺栓進(jìn)行軸向固定。</p><p>  3.1.4 軸的最小直徑的確定</p><p>  軸的最小直徑的設(shè)計,由公式:</p><p><b> ?。?.4)</b></p><p> 

49、 其中:d——為軸的最小直徑;</p><p>  A——為由材料與受載情況決定的系數(shù);</p><p>  P——為軸傳遞的功率(kW);</p><p>  n——為軸的轉(zhuǎn)速(r/min)。</p><p>  由表3.2,A的值取80,帶入式3.4,d=988</p><p>  表3.2 軸常用幾種材料的A值&

50、lt;/p><p>  3.1.5軸承的選擇</p><p>  軸承分為滾動軸承和滑動軸承,它們都可以用于支撐軸及軸上零件,以保持軸的旋轉(zhuǎn)精度,并減少轉(zhuǎn)軸與支撐之間的摩擦和磨損?;瑒虞S承的摩擦損失較大,使用、潤滑、維護(hù)也比較復(fù)雜;滾動軸承摩擦因數(shù)較低,啟動力矩小、軸向尺寸小,特別是已經(jīng)標(biāo)準(zhǔn)化,使得設(shè)計、使用、潤滑、維護(hù)都很方便。</p><p>  滾動軸承的分類也很

51、多,包括調(diào)心球軸承、調(diào)心滾子軸承、推力球軸承、圓錐滾子軸承、深溝球軸承、角接觸球軸承、圓柱滾子軸承、滾針軸承等等。</p><p>  由于內(nèi)框軸在旋轉(zhuǎn)時需同時承受軸向力與徑向力,所以選擇的軸承形式必須滿足這兩點(diǎn)要求,滿足需求的軸承有:推力調(diào)心滾子軸承、角接觸球軸承、圓錐滾子軸承。</p><p>  推力調(diào)心滾子軸承的軸向載荷有限制,不可選。在同樣外形尺寸下,角接觸球軸承,由于內(nèi)框需同時

52、承受軸向和徑向載荷,所以選擇安裝角接觸球軸承。、</p><p>  3.1.6 軸承的固定與密封</p><p>  軸承端蓋既對軸承起到固定支撐作用,也對軸承起到密封作用。本次設(shè)計中軸承尺寸如表3.3所示</p><p><b>  表3.3 端蓋尺寸</b></p><p>  軸承密封是為了阻止?jié)櫥瑒┩庑沽魇廴?/p>

53、環(huán)境,并防止灰塵、水、腐蝕性氣體等侵入軸承。一般可分兩大類:</p><p><b>  接觸式密封</b></p><p>  氈圈密封:軸承端蓋上開出梯形槽,將按標(biāo)準(zhǔn)制成環(huán)形的細(xì)毛氈放置于槽中,以與軸密合接觸。</p><p>  唇形密封圈密封:密封圈由皮革或耐油橡膠等材料制成,具有唇形結(jié)構(gòu),將其裝如軸承蓋中,靠材料的彈力和環(huán)行螺旋彈簧的

54、扣緊作用與軸緊密接觸。</p><p><b>  非接觸式密封</b></p><p>  間隙式密封:在軸表面與軸承端蓋通孔壁之間形成有一定軸向?qū)挾鹊沫h(huán)行間隙,依靠間隙流體阻力效應(yīng)密封.</p><p>  迷宮式密封:在旋轉(zhuǎn)件與固定件之間構(gòu)成曲折的間隙來實(shí)現(xiàn)密封。</p><p>  由于內(nèi)框無特殊要求,所以采用普

55、通密封方式即可滿足設(shè)計要求。本次設(shè)計采用氈圈油封,型號:氈圈FZ/T92010-91</p><p>  3.1.7 內(nèi)框軸與負(fù)載盤的聯(lián)接方式</p><p>  內(nèi)框軸軸端與負(fù)載盤的聯(lián)接可采用的方式有多種:如過盈配合、鍵連接、成型連接、彈性環(huán)聯(lián)接、脹緊套連接等等,均可實(shí)現(xiàn)。</p><p>  過盈配合連接是利用兩個相配零件的裝配過盈量實(shí)現(xiàn)的一種連接。零件的配合表

56、面多為圓柱面。組成過盈聯(lián)接后,由于組合處的彈性變形和裝配過盈量,在包容件和被包容件的配合面間將產(chǎn)生很大的正壓力。當(dāng)連接承受外載荷時,配合表面考此正壓力所產(chǎn)生的摩擦力或摩擦力矩來傳遞載荷。但拆開過盈配合聯(lián)接需要很大的外力,往往會損壞連接零件的配合表面,甚至整個零件。</p><p>  鍵聯(lián)接包括平鍵聯(lián)接、半圓鍵聯(lián)接、楔鍵聯(lián)接、切向鍵聯(lián)接。平鍵聯(lián)接具有結(jié)構(gòu)簡單、對中性好、拆裝方便等優(yōu)點(diǎn),但這種聯(lián)接不能承受軸向力,起

57、不到軸向固定作用。半圓鍵聯(lián)接只用于靜聯(lián)接,主要用于載荷較小的聯(lián)接及錐形軸端與輪轂的連接。楔鍵聯(lián)接用于靜聯(lián)接,主要用于定心精度要求不高、載荷平穩(wěn)和低速的場合。切向鍵聯(lián)接承載能力大,適于傳遞較大的轉(zhuǎn)矩,常用于傳遞直徑大于100mm的重型機(jī)械軸上,且對中精度要求不高的場合。</p><p>  成型聯(lián)接是利用非圓剖面的軸裝在相應(yīng)零件轂孔中而形成的,具有拆裝方便、對中性好、應(yīng)力集中小、傳遞轉(zhuǎn)矩大等優(yōu)點(diǎn),但加工比較復(fù)雜,應(yīng)

58、用尚不廣泛。</p><p>  彈性環(huán)聯(lián)接定心性好,拆裝方便、承載能力高,并有密封作用。</p><p>  在彈性環(huán)基礎(chǔ)上演變出的脹緊套連接不但繼承了以上優(yōu)點(diǎn),而且結(jié)構(gòu)簡單,加工方便,并由成批型號產(chǎn)品可供選擇,不必單獨(dú)設(shè)計,所以本次設(shè)計中,中框軸與負(fù)載盤的聯(lián)接采用脹緊套聯(lián)接方式。</p><p>  規(guī)格:最大轉(zhuǎn)矩M=17N·m,質(zhì)量0.41kg,型號

59、:Z5</p><p><b>  脹緊套轉(zhuǎn)動慣量:</b></p><p><b>  kg/m2</b></p><p>  脹緊套結(jié)構(gòu)尺寸如圖3.3所示</p><p>  圖3.3 Z5型脹緊套</p><p>  3.1.8 主要零件剛度校核</p>

60、<p>  根據(jù)精密測試設(shè)備的精度要求,其支撐件的結(jié)構(gòu)及尺寸設(shè)計,都遠(yuǎn)遠(yuǎn)滿足強(qiáng)度條件,因此這里只對剛度進(jìn)行校核。又因?yàn)楸巨D(zhuǎn)臺內(nèi)環(huán)框架即為內(nèi)環(huán)軸,所以只對內(nèi)環(huán)軸的剛度進(jìn)行校核。</p><p>  滾動軸為空心階梯軸,其扭轉(zhuǎn)角計算公式見式3.4</p><p><b> ?。?.5)</b></p><p><b>  式中—

61、—切變模量;</b></p><p>  ——階梯軸上第段所傳遞的扭矩;</p><p>  ——階梯軸上第段的長度;</p><p>  ——階梯軸上第段的外徑;</p><p>  ——階梯軸上第段的內(nèi)徑。</p><p>  為了盡可能減小轉(zhuǎn)臺的轉(zhuǎn)動慣量,在保證強(qiáng)度和剛度的情況下,本轉(zhuǎn)臺各軸的材料均采

62、用鋁合金材料(),其物理性能見表3.4</p><p><b>  表3.4 物理性能</b></p><p>  將數(shù)據(jù)代入式(3.4)</p><p><b>  m)</b></p><p>  查機(jī)械設(shè)計手冊,關(guān)于許用扭轉(zhuǎn)角的參考數(shù)據(jù)如下:</p><p>  精密機(jī)

63、械的軸 m</p><p>  一般傳動軸 m</p><p>  精度要求不高的軸 m</p><p>  顯然,滾動軸的扭轉(zhuǎn)角m,內(nèi)環(huán)軸的扭轉(zhuǎn)剛度滿足要求。由于負(fù)載安裝與內(nèi)環(huán)軸的內(nèi)孔中,所以內(nèi)環(huán)軸的彎曲剛度必定滿足要求。</p><p>  3.1.9 電機(jī)轉(zhuǎn)矩的校核</p><

64、p>  在轉(zhuǎn)臺設(shè)計中,電動轉(zhuǎn)臺通常都采用直流力矩電機(jī)驅(qū)動。但是直流力矩電機(jī)作為直流電機(jī)由于有換向器和電刷,所以存在許多缺點(diǎn)。例如,峰值轉(zhuǎn)矩小、存在接觸導(dǎo)電、有點(diǎn)火化和無線電干擾、電機(jī)的可靠性和維護(hù)性相對較差等。為了克服這些缺點(diǎn),我們在考察了[6]國內(nèi)外電機(jī)發(fā)展的最新進(jìn)展,并考慮本次設(shè)計的經(jīng)濟(jì)性后,我們決定選用直流無刷電機(jī)。由于本次設(shè)計的轉(zhuǎn)臺結(jié)構(gòu)較大,對電機(jī)結(jié)構(gòu)的要求也比較特殊,所以設(shè)計中我們需要的電機(jī)都是根據(jù)我們的需要定購。對于內(nèi)

65、環(huán)電機(jī),根據(jù)我們力矩計算結(jié)果再乘以1.3倍的安全系數(shù),電機(jī)的轉(zhuǎn)矩為Nm。按照電機(jī)結(jié)構(gòu)尺寸,由式(3.2)、(3.3)計算其轉(zhuǎn)子轉(zhuǎn)矩為: Nm。內(nèi)環(huán)電機(jī)所需轉(zhuǎn)矩為:Nm。顯然 Nm,所以,所選電機(jī)轉(zhuǎn)矩滿足要求。</p><p>  3.2 轉(zhuǎn)臺中環(huán)結(jié)構(gòu)設(shè)計</p><p>  中環(huán)結(jié)構(gòu)設(shè)計所要解決的關(guān)鍵問題是,中環(huán)軸系的結(jié)構(gòu)布局、軸承的選擇及布置和與外環(huán)支撐件的配合等。</p>

66、<p>  3.2.1 結(jié)構(gòu)設(shè)計</p><p>  中環(huán)軸系的結(jié)構(gòu)設(shè)計如圖3.4所示,中環(huán)框架尺寸較大,為了減小重量和轉(zhuǎn)動慣量將其設(shè)計為全中空結(jié)構(gòu),內(nèi)部加筋板來保證剛度。中環(huán)軸與中環(huán)電機(jī)轉(zhuǎn)子軸做成一體,中環(huán)框架向外伸出兩個耳軸,在耳軸孔中安裝軸套和聯(lián)軸器用以與中環(huán)軸相聯(lián),聯(lián)軸器采Z5型脹緊聯(lián)結(jié)套。軸系采用兩對角接觸球軸承,對稱兩端電機(jī)驅(qū)動,外環(huán)框架的上分體箱即為中環(huán)電機(jī)的電機(jī)座,這種布置可使結(jié)構(gòu)

67、更加緊湊,盡可能的減小了安裝誤差。由于內(nèi)環(huán)的重量分布于中環(huán)軸的一側(cè),為了平衡內(nèi)環(huán)重量,在中環(huán)軸的另一側(cè)加一組配重塊。測角元件采用光電絕對式碼盤,該軸系摩擦力矩小、結(jié)構(gòu)簡單、易于調(diào)整。</p><p><b> ?。╝)</b></p><p><b> ?。╞)</b></p><p>  圖3.4 中環(huán)結(jié)構(gòu)設(shè)計圖<

68、/p><p>  圖3.5中環(huán)框架剖面圖</p><p>  由于中環(huán)框架結(jié)構(gòu)形狀比較復(fù)雜,為了更清楚的表達(dá)其結(jié)構(gòu)形狀,圖3.5是中環(huán)框架的三維模型圖。</p><p><b>  轉(zhuǎn)矩計算</b></p><p>  表3.5 繞中環(huán)轉(zhuǎn)動零件數(shù)據(jù)</p><p>  與內(nèi)環(huán)轉(zhuǎn)矩計算方法相同,先由三維

69、圖形通過計算機(jī)計算出零件的質(zhì)量和回轉(zhuǎn)半徑,由式3.2和式3.3分別計算出零件的轉(zhuǎn)動慣量和轉(zhuǎn)矩。繞中環(huán)軸轉(zhuǎn)動的各零件的轉(zhuǎn)動慣量計算結(jié)果如表3.5所示。</p><p><b>  轉(zhuǎn)矩:Nm</b></p><p>  由于電機(jī)轉(zhuǎn)子軸即為俯仰軸,所以此處不需對俯仰軸扭轉(zhuǎn)角進(jìn)行校核。</p><p>  3.2.3 電機(jī)轉(zhuǎn)矩校核</p>

70、;<p>  對繞中環(huán)轉(zhuǎn)動零件的轉(zhuǎn)矩乘以1.3倍的安全系數(shù)作為我們所選的電機(jī)轉(zhuǎn)矩,即電機(jī)轉(zhuǎn)矩為847.926Nm。由三維圖形、式3.2和式3.3計算出電機(jī)轉(zhuǎn)子的轉(zhuǎn)矩Nm。中環(huán)電機(jī)所需轉(zhuǎn)矩為:</p><p><b>  Nm</b></p><p>  顯然,Nm,所,以所選電機(jī)轉(zhuǎn)矩滿足要求。</p><p>  3.3 轉(zhuǎn)臺外

71、環(huán)結(jié)構(gòu)設(shè)計</p><p>  外環(huán)結(jié)構(gòu)設(shè)計所要解決的關(guān)鍵問題是,分體式外框架及其薄壁箱式框架結(jié)構(gòu)、軸承及聯(lián)軸器的選擇等。</p><p>  3.3.1 結(jié)構(gòu)設(shè)計</p><p>  外環(huán)軸系的結(jié)構(gòu)如圖3.6所示。外環(huán)軸系的主支撐采用鋼絲滾道軸承,它可以同時承受雙向的軸向力和徑向力;外環(huán)框架為分體的中空箱式結(jié)構(gòu),重量輕,便于安裝調(diào)試。將外框架分為框架和兩個中環(huán)基

72、座的分體結(jié)構(gòu),目的是為了保證一體的中框架正確安裝,分體結(jié)構(gòu)需要保證的關(guān)鍵問題是要保證框架和兩個中環(huán)基座的準(zhǔn)確安裝和中環(huán)軸承座孔與框架的聯(lián)軸器孔的垂直度和相交度,為此,要求加工中將外框架和兩個中環(huán)基座安裝成一體后精加工,以達(dá)到設(shè)計要求,同時要求兩個中環(huán)基座與框架保證一定的配合精度將外框架設(shè)計成薄壁箱式框架結(jié)構(gòu)可以使框架在達(dá)到最低重量的前提下實(shí)現(xiàn)最大的結(jié)構(gòu)剛度,大型薄壁箱式框架結(jié)構(gòu)的關(guān)鍵在零件的鑄造技術(shù),包括木模制造。為此,我們將加強(qiáng)框架鑄

73、造環(huán)節(jié)的質(zhì)量控制,以滿足指標(biāo)要求。外框架上分體箱模型圖如圖3.7所示。外環(huán)電機(jī)由一對軸承支撐自成一體,安裝方便,外環(huán)軸與外框架采用漲緊式聯(lián)軸器聯(lián)接,外環(huán)測角元件為光電碼盤。</p><p>  3.3.2 轉(zhuǎn)矩計算</p><p>  由三維圖形通過計算機(jī)計算出零件的質(zhì)量和回轉(zhuǎn)半徑,由式3.2和式3.3分別計算出零件的轉(zhuǎn)動慣量和轉(zhuǎn)矩。</p><p><b&

74、gt;  轉(zhuǎn)矩:Nm</b></p><p>  與俯仰軸系相同方位電機(jī)轉(zhuǎn)子軸即為方位軸,所以此處也不需對方位軸扭轉(zhuǎn)角進(jìn)</p><p>  圖3.6 外環(huán)軸系結(jié)構(gòu)圖</p><p>  圖3.7外框架上分體箱三維視圖</p><p><b>  行校核。</b></p><p>  

75、繞外環(huán)軸轉(zhuǎn)動的各零件的轉(zhuǎn)動慣量計算結(jié)果如表3.6所示</p><p>  表3.6繞外環(huán)轉(zhuǎn)動零件數(shù)據(jù)</p><p>  3.3.3 電機(jī)轉(zhuǎn)矩校核</p><p>  對繞外環(huán)轉(zhuǎn)動零件的轉(zhuǎn)矩乘以1.3倍的安全系數(shù)作為我們所選的電機(jī)轉(zhuǎn)矩,即電機(jī)轉(zhuǎn)矩為11169.959Nm。由三維圖形、式3.2和式3.3計算出電機(jī)轉(zhuǎn)子的轉(zhuǎn)矩Nm。中環(huán)電機(jī)所需轉(zhuǎn)矩為:</p>

76、;<p><b>  Nm</b></p><p>  顯然,Nm,所,以所選電機(jī)轉(zhuǎn)矩滿足要求。</p><p>  3.4 機(jī)械轉(zhuǎn)角限位裝置設(shè)計</p><p>  前面已說過,轉(zhuǎn)臺各軸系均為局部轉(zhuǎn)角,系統(tǒng)超限保護(hù)均為三級保護(hù),其順序?yàn)檐浖Wo(hù)、光電開關(guān)保護(hù)和機(jī)械限位,其中,軟件保護(hù)不是本設(shè)計的內(nèi)容,光電開關(guān)機(jī)保護(hù)中的光電管為

77、購買的標(biāo)準(zhǔn)件,也不是本設(shè)計的內(nèi)容,本設(shè)計只對機(jī)械限位裝置的結(jié)構(gòu)進(jìn)行設(shè)計。</p><p>  如圖3.8和圖3.9所示為內(nèi)環(huán)轉(zhuǎn)角限位裝置結(jié)構(gòu)和外環(huán)轉(zhuǎn)角限位裝置結(jié)構(gòu)</p><p>  由圖3.8和圖3.9可以看出,內(nèi)環(huán)轉(zhuǎn)角機(jī)械限位與外環(huán)轉(zhuǎn)角機(jī)械限位裝置結(jié)構(gòu)相似,都是由兩個固定的限位座和一個運(yùn)動的限位塊組成。為了緩沖和減小噪聲,在固定的限位座上安裝橡膠緩沖裝置。由于外環(huán)轉(zhuǎn)動慣量較大,所以除在

78、限位座上安裝橡膠緩沖裝置外,還安裝有緩沖液壓缸,進(jìn)一步改善緩沖的效果。</p><p>  圖3.8 內(nèi)環(huán)轉(zhuǎn)角機(jī)械限位裝置</p><p>  圖3.9 外環(huán)轉(zhuǎn)角機(jī)械限位裝置</p><p>  中環(huán)機(jī)械限位裝置與內(nèi)、外環(huán)機(jī)械限位裝置結(jié)構(gòu)不同,其結(jié)構(gòu)如圖3.10所示</p><p>  圖3.10 外環(huán)轉(zhuǎn)角機(jī)械限位裝置</p>

79、<p>  由圖3.10可以看出,外環(huán)機(jī)械限位裝置由機(jī)械限位盤、俯仰機(jī)械插銷、俯仰機(jī)械插銷導(dǎo)套和限位緩沖橡膠等組成,俯仰機(jī)械限位盤隨俯仰軸系一起運(yùn)動,運(yùn)動范圍由俯仰機(jī)械插銷導(dǎo)套和限位緩沖橡膠等控制在。當(dāng)轉(zhuǎn)臺在不工作的時候,用機(jī)械插銷固定俯仰軸系,使其不會左右運(yùn)動。</p><p><b>  3.5 本章小結(jié)</b></p><p>  本章設(shè)計內(nèi)容為此次

80、設(shè)計的主要內(nèi)容,詳細(xì)設(shè)計了智能掃描機(jī)械臺機(jī)械結(jié)構(gòu),其包括了內(nèi)環(huán)、中環(huán)、外環(huán)的結(jié)構(gòu)設(shè)計。內(nèi)環(huán)、中環(huán)、外環(huán)均采用電機(jī)直接驅(qū)動,由于該驅(qū)動需要較低轉(zhuǎn)速和較大轉(zhuǎn)矩,此電機(jī)為定做,所以這里就沒有標(biāo)出電機(jī)型號。另外中軸和外環(huán)軸上的軸承亦是定做,故沒有查出相應(yīng)型號。此章設(shè)計完成了三軸主要零件的剛度校核和三軸電機(jī)轉(zhuǎn)矩的校核,選用了電機(jī)并對機(jī)械轉(zhuǎn)角限位裝置完成了設(shè)計。根據(jù)次章設(shè)計基本完成了各主要部分的結(jié)構(gòu)尺寸。</p><p>&

81、lt;b>  誤差分析</b></p><p>  誤差分析的主要內(nèi)容是根據(jù)本次設(shè)計的相關(guān)技術(shù)要求,分析各軸的回轉(zhuǎn)精度以及三軸的相交度。</p><p>  4.1 回轉(zhuǎn)精度分析</p><p>  回轉(zhuǎn)精度是影響轉(zhuǎn)臺技術(shù)指標(biāo)的主要誤差之一,本節(jié)將對各軸的回轉(zhuǎn)精度作以簡要分析,</p><p>  4.1.1 滾動軸系回

82、轉(zhuǎn)精度</p><p>  由于滾動軸系的支承,我們采用鋼絲滾道軸承。此種軸承滾動體數(shù)目多,排列緊密,具有很強(qiáng)的誤差均化能力。其中,在載荷的分配方面,主支撐承擔(dān)主要的軸向和徑向負(fù)荷。因此,這里著重考慮主要支承軸承引起的滾動軸的回轉(zhuǎn)誤差。</p><p>  (1) 滾動軸承的有效直徑mm,滾道基體的端跳動設(shè)計為mm,則由此造成的滾動軸的最大回轉(zhuǎn)誤差為:</p><p&g

83、t;  (2) 由于鋼絲直徑不均勻造成鋼絲滾道端跳動為mm,則由此造成的滾動軸的最大回轉(zhuǎn)誤差為:</p><p>  (3) 鋼球的直徑誤差為mm,則由此造成的滾動軸的最大回轉(zhuǎn)誤差為:</p><p>  滾動軸總的回轉(zhuǎn)誤差為:</p><p>  設(shè)計要求三軸的轉(zhuǎn)角精度均為,即,顯然,所以滾動軸系回轉(zhuǎn)精度滿足設(shè)計要求。</p><p>  

84、4.1.2 俯仰軸系回轉(zhuǎn)精度</p><p>  對于轉(zhuǎn)臺俯仰軸系的支撐,我們采用的是兩對角接觸球軸承。取兩對軸承的平均跨距作為回轉(zhuǎn)精度計算的軸承跨距。</p><p>  (1) 中環(huán)軸軸承的最大徑向跳動mm,軸承跨距mm,由此造成的中環(huán)軸的最大回轉(zhuǎn)誤差為:</p><p>  (2) 軸承座孔不同軸度及最大徑向跳動為mm,軸承跨距mm,則由此造成的中環(huán)軸的最大

85、回轉(zhuǎn)誤差為:</p><p>  (3) 框架兩端軸頭的最大不同軸度mm,軸承跨距mm,則由此造成的中環(huán)軸的最大回轉(zhuǎn)誤差為:</p><p>  中環(huán)軸總的回轉(zhuǎn)誤差為:</p><p>  由于,所以俯仰軸系回轉(zhuǎn)精度滿足設(shè)計要求。</p><p>  4.1.3 方位軸系回轉(zhuǎn)精度</p><p>  方位軸系的支承,

86、我們也采用鋼絲滾道軸承。</p><p>  (1) 軸承的有效直徑mm,滾道基體的端跳動設(shè)計為mm,則由此造成的方位軸的最大回轉(zhuǎn)誤差為:</p><p>  (2) 由于鋼絲直徑不均勻造成鋼絲滾道端跳動為mm,則由此造成的方位軸的最大回轉(zhuǎn)誤差為:</p><p>  (3) 鋼球的直徑誤差為mm,則由此造成的方位軸的最大回轉(zhuǎn)誤差為:</p><

87、p>  方位軸系軸總的回轉(zhuǎn)誤差為:</p><p>  由于,所以俯仰軸系回轉(zhuǎn)精度滿足設(shè)計要求。</p><p>  4.2 三軸相交度分析</p><p>  4.2.1 滾動軸與俯仰軸的相交度</p><p>  滾動軸與俯仰軸的[7]相交度誤差主要是由滾動軸的徑向誤差和俯仰軸的徑向誤差造成的。滾動軸的徑向誤差既與材料和加工有關(guān)

88、又與裝配有關(guān),由4.1節(jié)的分析可知由材料和加工造成的徑向誤差為:</p><p><b>  mm</b></p><p><b>  裝配誤差: mm</b></p><p><b>  俯仰軸系的 mm</b></p><p>  相交度誤差:0.026+0.15+0.

89、045=0.221mm<mm,所以,滿足要求。</p><p>  俯仰軸與方位軸的相交度</p><p>  與滾動軸系和俯仰軸系徑向誤差產(chǎn)生的原因相同,方位軸的徑向誤差也是既與材料和加工有關(guān)又與裝配有關(guān)。同樣,由4.1節(jié)的分析可知,方位軸系的mm,</p><p><b>  裝配誤差: mm</b></p><

90、p><b>  聯(lián)軸器誤差:mm</b></p><p>  相交度誤差:0.026+0.15+0.045+0.017=0.238mm<mm,所以,滿足要求。</p><p><b>  4.3 本章小結(jié)</b></p><p>  根據(jù)此次設(shè)計的相關(guān)技術(shù)要求在本章內(nèi)容中主要完成對于誤差的分析?;剞D(zhuǎn)精度是影響

91、轉(zhuǎn)臺技術(shù)指標(biāo)的主要誤差之一,本章詳細(xì)地分析了各軸的回轉(zhuǎn)精度,也分析了由與材料、加工和裝配有關(guān)的徑向誤差造成的相交度誤差,并對回轉(zhuǎn)精度和相交度進(jìn)行了校核。 </p><p>  第5章 測量及其它元件簡介</p><p>  三軸伺服轉(zhuǎn)臺一般由機(jī)械部分、驅(qū)動部分、控制系統(tǒng)和檢測系統(tǒng)四

92、部分組成。各部分都對轉(zhuǎn)臺的技術(shù)指標(biāo)有重要影響,轉(zhuǎn)臺的精度也由這四部分的精度組成。機(jī)械部分的精度主要由結(jié)構(gòu)和加工來決定,驅(qū)動部分的精度主要由驅(qū)動元件的精度決定,控制系統(tǒng)和檢測系統(tǒng)的精度主要由控制和檢測元件的精度和性能決定。本轉(zhuǎn)臺所用到的驅(qū)動元件為永磁交流伺服電機(jī),測量元件有感應(yīng)同步器和光電碼盤,其它元件有聯(lián)軸器、鋼絲滾道軸承等,本章將對這些元件的結(jié)構(gòu)及工作原理作以簡單介紹</p><p>  5.1 直流無刷電機(jī)

93、</p><p>  直流無刷電動機(jī)驅(qū)動系統(tǒng)由電機(jī)本體和驅(qū)動控制電路及位置傳感器組成,具體如圖5.1所示,電機(jī)本體結(jié)構(gòu)如圖5.2所示。定子采用三相對稱繞組,轉(zhuǎn)子由轉(zhuǎn)子磁鋼激勵,磁路為徑向結(jié)構(gòu),瓦形磁鋼粘接在轉(zhuǎn)子鐵心上,定、轉(zhuǎn)子采用分裝形式,位置傳感器為光電編碼器,與電機(jī)同軸安裝,用來檢測電機(jī)轉(zhuǎn)子的位置。</p><p>  圖5.1 電機(jī)系統(tǒng)示意圖</p><p>

94、  圖5.2 電機(jī)結(jié)構(gòu)示意圖</p><p>  驅(qū)動控制電路將位置傳感器檢測的轉(zhuǎn)子位置信號處理成三相正弦脈寬調(diào)制信號,通過逆變橋向電機(jī)定子通以三相對稱電流,定子繞組電流與轉(zhuǎn)子磁場相互作用產(chǎn)生電磁轉(zhuǎn)矩。通過電流反饋實(shí)現(xiàn)準(zhǔn)矢量控制,提高電機(jī)的出力。控制繞組的電壓和電流即可實(shí)現(xiàn)電機(jī)的轉(zhuǎn)速和轉(zhuǎn)矩控制。無刷直流電動機(jī)具有如下特點(diǎn):</p><p>  1.電機(jī)的峰值轉(zhuǎn)矩大,時間常數(shù)小,響應(yīng)快;&l

95、t;/p><p>  2.結(jié)構(gòu)簡單,可靠性高,無須維修;</p><p>  3.電機(jī)系統(tǒng)具有直流電機(jī)的工作特性,控制特性好;</p><p>  4.電機(jī)無勵磁損耗,定子電樞散熱條件好。</p><p>  5.2 感應(yīng)同步器</p><p>  感應(yīng)同步器是一種電磁感應(yīng)式多極位置傳感元件。由于多極結(jié)構(gòu),在電與磁兩方面

96、對誤差起補(bǔ)償作用,所以具有很高的精度。它的極對數(shù)可以做的很多。隨著極數(shù)的增加,精度會相應(yīng)提高。</p><p>  感應(yīng)同步器按其運(yùn)動方式可分為旋轉(zhuǎn)式和直線式兩種。前者用來傳感和檢測角度位移信號,后者是傳感和檢測直線位移信號。在結(jié)構(gòu)上,兩者都包括固定和運(yùn)動兩大部分對于旋轉(zhuǎn)式分別稱為定子和轉(zhuǎn)子;對于直線式分別稱為定尺和滑尺。</p><p>  不論是旋轉(zhuǎn)式還是直線式,定、動兩部分都是片狀,

97、因此有時統(tǒng)稱為定片和動片。本轉(zhuǎn)臺使用的是旋轉(zhuǎn)式感應(yīng)同步器,下面對其結(jié)構(gòu)作以簡單介紹。圖5.3是旋轉(zhuǎn)式感應(yīng)同步器的結(jié)構(gòu)原理圖。</p><p>  圖5.3 旋轉(zhuǎn)式感應(yīng)同步器結(jié)構(gòu)</p><p>  定、轉(zhuǎn)子一般都用玻璃、不銹鋼、硬鋁合金等材料作基板(但由于加工問題,一般不用玻璃),呈環(huán)狀。定子與轉(zhuǎn)子彼此相對的一面上均有導(dǎo)電繞組,繞租用銅箔構(gòu)成,厚度為0.05mm左右。基極和繞組之間是經(jīng)過精

98、加工的絕緣層。繞組表面還要加一層和繞組絕緣的屏蔽層,屏蔽層材料采用鋁箔或鋁膜。</p><p>  轉(zhuǎn)子繞組為連續(xù)式的,稱為連續(xù)繞組。它由有效導(dǎo)體、內(nèi)端部和外端部構(gòu)成。每根導(dǎo)體就是一個極,導(dǎo)體數(shù)就是極數(shù)。定子上是兩相正交繞組,做成分段式,稱為分段繞組。兩相交叉分布,相差90電角度。屬于同一相的各組繞組導(dǎo)體用連接線串聯(lián)起來。定、轉(zhuǎn)子的有效導(dǎo)體都是呈輻射狀。轉(zhuǎn)子繞組引線方式有三種:1直接由電纜引出;2借助電刷、集電環(huán)

99、引出;3借助裝在定、轉(zhuǎn)子基板內(nèi)圓處的環(huán)形變壓器耦合引出。</p><p>  5.3 絕對式光電碼盤</p><p>  光電碼盤具有精度較高、安裝調(diào)整方便、使用維護(hù)簡單、對環(huán)境無特殊要求、可靠性好等優(yōu)點(diǎn),而且價格相對便宜,所以在本次設(shè)計中采用RCN200型絕對式光電碼盤。目前,在許多高精度的機(jī)電控制系統(tǒng)中被廣泛用作角位置傳感器;實(shí)踐己證明使用光電式碼盤作為傳感器構(gòu)成測角反饋系統(tǒng),可使數(shù)

100、字控制系統(tǒng)的設(shè)計更簡單,測試更方便。</p><p>  絕對式碼盤的輸出信號經(jīng)處理后的二進(jìn)制數(shù)碼表示碼盤所在點(diǎn)的絕對角位置,所以叫絕對式光電碼盤。絕對式光電碼盤比較適合于做角位置控制系統(tǒng)的傳感器。</p><p>  絕對式碼盤由三大部分組成包括旋轉(zhuǎn)的碼盤,光源和光電敏感元件。碼盤上有按一定規(guī)律分布的由透明和不透明區(qū)構(gòu)成的光學(xué)碼道圖案,它們是由涂有感光乳劑的玻璃質(zhì)(水晶)圓盤利用光刻技術(shù)

101、制成的。光源是超小型的鎢絲燈泡或者是一個固定光源。檢測光的元件是光敏二極管或光敏三極管等光敏元件。光源的光通過光學(xué)系統(tǒng),穿過碼盤的透光區(qū),最后與窄縫后面的一排徑向排列的光敏元件耦合,使光敏元件輸出為高電平,代表邏輯“1”;若被不透明區(qū)遮擋,則光敏元件輸出為低電平,代表邏輯“0”。對于碼盤的不同位置每個碼道都有自己的邏輯輸出,各個碼道的輸出編碼組合就表示碼盤的這個轉(zhuǎn)角位置。</p><p>  5.4 鋼絲滾道軸

102、承</p><p>  圖5.4所示是鋼絲滾道軸承的結(jié)構(gòu)圖,鋼絲滾道軸承由軸承內(nèi)環(huán)、軸承外環(huán)、保持架、鋼球和4根鋼絲組成。</p><p>  圖5.4 鋼絲滾道軸承結(jié)構(gòu)</p><p>  鋼絲滾道軸承的主要特點(diǎn)如下:</p><p> ?。?)軸承的大小和外形可以根據(jù)需要制造,沒有固定的外形。</p><p>  

103、(2)能承受很大的軸向和徑向力。</p><p> ?。?)滾珠與鋼絲的間隙可調(diào),制造和安裝方便。</p><p> ?。?)在承受大軸向力和大直徑的場合使用很廣泛。</p><p>  (5)重量輕、轉(zhuǎn)動慣量低。</p><p>  (6)結(jié)構(gòu)尺寸小、精度高、剛度高。</p><p>  5.5 脹緊式聯(lián)軸器<

104、;/p><p>  本轉(zhuǎn)臺使用的聯(lián)軸器是Z5型脹緊式聯(lián)軸器,其結(jié)構(gòu)如圖5.5所示。</p><p>  脹緊式聯(lián)軸器的主要用途是代替單鍵和花鍵的聯(lián)結(jié)作用,以實(shí)現(xiàn)軸與軸上零件的聯(lián)結(jié)。它可以傳遞扭矩、軸向力或兩者的復(fù)合負(fù)荷,使用時通過高強(qiáng)度螺栓和楔塊的作用,內(nèi)環(huán)與軸之間,外環(huán)與輪轂之間產(chǎn)生巨大抱緊力;當(dāng)承受負(fù)荷時,靠脹套與機(jī)件的結(jié)合壓力及相伴產(chǎn)生的磨擦力傳遞扭矩,當(dāng)承受負(fù)荷時,靠脹套與機(jī)件的結(jié)合壓

105、力及相伴產(chǎn)生的磨擦力傳遞扭矩,軸向力或二者的復(fù)合載荷。</p><p>  圖5.5 Z5型脹緊式聯(lián)軸器</p><p><b>  5.6 本章小結(jié)</b></p><p>  本章設(shè)計根據(jù)此次設(shè)計的精度要求完成驅(qū)動精度、控制精度與檢測精度設(shè)計,選用了高精度驅(qū)動元件和檢測元件,由于控制元件不屬于本設(shè)計內(nèi)容,所以驅(qū)動元件選擇永磁交流伺服電機(jī),

106、檢測元件選用了絕對式光電碼盤。根據(jù)傳動精度要求選用高精度的運(yùn)動傳動件。</p><p><b>  結(jié) 論</b></p><p>  智能掃描機(jī)械臺的設(shè)計好壞關(guān)系到觀測、追蹤、導(dǎo)航、控制等方面的精度,是實(shí)現(xiàn)自動化的重要保證。本次設(shè)計是對智能掃描機(jī)械臺的結(jié)構(gòu)設(shè)計的模擬設(shè)計過程,根據(jù)題目的設(shè)計要求,本次設(shè)計完成了內(nèi)框的±90°回轉(zhuǎn)、中框、外框的&#

107、177;45°回轉(zhuǎn)運(yùn)動。設(shè)計結(jié)構(gòu)基本合理。本論文敘述了智能掃描機(jī)械臺的國內(nèi)外發(fā)展概況、轉(zhuǎn)臺的工作原理、作用,主要針對智能掃描機(jī)械臺機(jī)械部分的設(shè)計,對轉(zhuǎn)臺的總體結(jié)構(gòu)及詳細(xì)結(jié)構(gòu)進(jìn)行了理論論證,同時進(jìn)行了必要的科學(xué)計算,包括對內(nèi)環(huán)、中環(huán)、外環(huán)的轉(zhuǎn)矩計算與電機(jī)轉(zhuǎn)矩的校核;對各軸系的回轉(zhuǎn)精度和三軸的相交度進(jìn)行了分析與校核。本次設(shè)計全部采用了直接驅(qū)動方式,減少了多機(jī)構(gòu)傳動引起的誤差,理論上實(shí)現(xiàn)了高精度的要求。設(shè)計中還采用了脹緊套連接方式,

108、它不僅能保證軸與軸轂間的聯(lián)接強(qiáng)度,也能調(diào)節(jié)各框架軸線的垂直精度此后參照設(shè)計技術(shù)要求與參考資料選用了轉(zhuǎn)臺各軸系運(yùn)轉(zhuǎn)所需要的零部件,并對所選部件進(jìn)行簡要的分析。</p><p><b>  參考文獻(xiàn)</b></p><p>  孫靖民.現(xiàn)代機(jī)械設(shè)計方法[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2003.</p><p>  陳鐵鳴,王連明.機(jī)械設(shè)計[

109、M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1998.</p><p>  王連明.簡明機(jī)械設(shè)計手冊[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2006.</p><p>  郎需英.三軸慣導(dǎo)測試轉(zhuǎn)臺[N].北京:系統(tǒng)仿真學(xué)報:2001,Vol.17</p><p>  趙經(jīng)文,王鐸.理論力學(xué)(下冊)[M].北京:高等教育出版社,2001</p><p>

110、;  趙九江,張少實(shí),王春香.材料力學(xué)[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2003.</p><p>  王連明.機(jī)械設(shè)計課程設(shè)計[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2002.</p><p>  成大先.機(jī)械設(shè)計手冊單行本[M].北京:化學(xué)工業(yè)出版社,2004.</p><p>  肖萬選.前燈雷達(dá)天線轉(zhuǎn)臺系統(tǒng)結(jié)構(gòu)分析[J].電子機(jī)械工程. 2002年第04期

111、.</p><p>  肖萬選,楊錫和,石輝.天線外場測試轉(zhuǎn)臺結(jié)構(gòu)技術(shù)研究[J].電子機(jī)械工程.2001年第05期.</p><p>  肖萬選.天線穩(wěn)定轉(zhuǎn)臺系統(tǒng)結(jié)構(gòu)設(shè)計技術(shù)研究[J]. 艦船電子對抗.1999年第04期.</p><p>  肖萬選,王喜坤.艦載雷達(dá)天線轉(zhuǎn)臺基座的結(jié)構(gòu)分析[J]. 電子機(jī)械工程.2000年第05期.</p><p

112、>  劉長海.艦載雷達(dá)天線轉(zhuǎn)臺系統(tǒng)的裝配設(shè)計及運(yùn)動仿真[J]. 電子機(jī)械工程.2002年第01期.</p><p>  肖萬選.天線轉(zhuǎn)臺驅(qū)動系統(tǒng)的軸向固定方式[J].電子機(jī)械工程.2001年第02期 .</p><p>  肖萬選.一種雷達(dá)天線轉(zhuǎn)臺系統(tǒng)的結(jié)構(gòu)分析[J].艦船電子對抗.2001年第05期.</p><p>  肖萬選.幾種天線測試轉(zhuǎn)臺的

113、傳動型式[J].電子機(jī)械工程.2000年第01期.</p><p>  肖萬選.一種雷達(dá)俯仰轉(zhuǎn)臺的傳動型式與天線的運(yùn)動范圍[J].艦船電子對抗.2003年第02期.</p><p>  楊錫和.一種新型雷達(dá)天線方位轉(zhuǎn)臺[J].雷達(dá)與對抗.2004年第02期.</p><p>  Psiaki, M.L. Attitude sensing using a global

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論