版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、重慶大學(xué)碩士學(xué)位論文基于混合用戶模型的協(xié)同過(guò)濾推薦算法研究姓名:袁先虎申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):計(jì)算機(jī)軟件與理論指導(dǎo)教師:王茜2010-04重慶大學(xué)碩士學(xué)位論文 英文摘要 II ABSTRACT Widely using of Internet and rapidly development of E- commerce caused information overload, which made difficulties f
2、or consumers to find their needed products within a mass of product information, thus E- commerce recommender systems emerge as the times require. Today, E- commerce recommender systems are immat
3、ure in practical use, and still have a lot of problems, like the quality of recommendation being seriously depressed by enormous and sparse ratings of consumers, bad system expansibility, bad recommendat
4、ion real- time, etc. To solve these main problems of current recommender systems, this dissertation valuably explores and researches the key techniques of user model and collaborative filtering algorith
5、ms in E- commerce personalized recommender systems. Collaborative filtering is the most widely used and successful technology for personalized recommender systems. However it faces challenges of scala
6、bility and recommendation accuracy. Collaborative filtering can be divided into memory based and model based. The former is more accurate while the latter performs better in scalability. This pap
7、er proposes a hybrid user model. The recommender system based on this model not only holds the advantage of recommendation accuracy in memory- based method, but also has the scalability as goo
8、d as model- based method. In the aspect of user model, the dissertation analyses defects of classical user model of collaborative filtering recommendation. And hybrid user model is constructed ba
9、sed on item content descriptions and demographic information. The hybrid user model condenses item content description, demographic information and user- item rating matrix, which raises the densit
10、y of data and helps to solve the problems of data sparsity and hard rating obtainment. Feature interest measure is introduced in the hybrid user model, which can reflect the degree of featur
11、e preference of users and obtain more accurate similarity between target user and the neighbors. In the aspect of collaborative filtering, this dissertation analyses sparsity, scalability, real- ti
12、me and recommendation accuracy issues of collaborative filtering algorithms in current E- commerce personalized recommender systems. To solve these problems, collaborative filtering recommendation algori
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于混合用戶模型的協(xié)同過(guò)濾推薦算法研究.pdf
- 綜合用戶特征的協(xié)同過(guò)濾推薦算法的研究.pdf
- 結(jié)合用戶聚類的協(xié)同過(guò)濾推薦算法研究.pdf
- 融合用戶注冊(cè)信息的協(xié)同過(guò)濾推薦算法.pdf
- 結(jié)合用戶背景信息的協(xié)同過(guò)濾推薦算法研究.pdf
- 基于用戶協(xié)同過(guò)濾推薦算法的研究.pdf
- 基于多維用戶興趣模型的協(xié)同過(guò)濾推薦算法.pdf
- 基于用戶行為協(xié)同過(guò)濾推薦算法.pdf
- 基于用戶興趣的協(xié)同過(guò)濾推薦算法研究.pdf
- 改進(jìn)用戶模型的協(xié)同過(guò)濾推薦算法.pdf
- 融合用戶差異度及信息熵的協(xié)同過(guò)濾推薦算法.pdf
- 基于用戶興趣偏移的協(xié)同過(guò)濾推薦算法研究.pdf
- 基于用戶興趣變化的協(xié)同過(guò)濾推薦算法研究.pdf
- 基于用戶動(dòng)態(tài)行為的協(xié)同過(guò)濾推薦算法研究.pdf
- 基于用戶的協(xié)同過(guò)濾推薦算法的改進(jìn)研究.pdf
- 融合用戶關(guān)系強(qiáng)度的協(xié)同過(guò)濾算法研究.pdf
- 基于云模型和用戶聚類的協(xié)同過(guò)濾推薦算法研究.pdf
- 基于用戶評(píng)分和用戶特征的混合協(xié)同過(guò)濾算法研究.pdf
- 基于用戶相似度的協(xié)同過(guò)濾推薦算法研究.pdf
- 基于用戶聚類的協(xié)同過(guò)濾推薦算法研究.pdf
評(píng)論
0/150
提交評(píng)論