版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Tension Stiffening in Lightly Reinforced Concrete SlabsR. Ian Gilbert1Abstract: The tensile capacity of concrete is usually neglected when calculating the strength of a reinforced concrete beam or slab, even though concr
2、ete continues to carry tensile stress between the cracks due to the transfer of forces from the tensile reinforcement to the concrete through bond. This contribution of the tensile concrete is known as tension stiffening
3、 and it affects the member’s stiffness after cracking and hence the deflection of the member and the width of the cracks under service loads. For lightly reinforced members, such as floor slabs, the flexural stiffness of
4、 a fully cracked section is many times smaller than that of an uncracked section, and tension stiffening contributes greatly to the postcracking stiffness. In this paper, the approaches to account for tension stiffening
5、in the ACI, European, and British codes are evaluated critically and predictions are compared with experimental observations. Finally, recommenda- tions are included for modeling tension stiffening in the design of reinf
6、orced concrete floor slabs for deflection control.DOI: 10.1061/?ASCE?0733-9445?2007?133:6?899?CE Database subject headings: Cracking; Creep; Deflection; Concrete, reinforced; Serviceability; Shrinkage; Concrete slabs.Int
7、roductionThe tensile capacity of concrete is usually neglected when calcu- lating the strength of a reinforced concrete beam or slab, even though concrete continues to carry tensile stress between the cracks due to the t
8、ransfer of forces from the tensile reinforcement to the concrete through bond. This contribution of the tensile concrete is known as tension stiffening, and it affects the mem- ber’s stiffness after cracking and hence it
9、s deflection and the width of the cracks. With the advent of high-strength steel reinforcement, rein- forced concrete slabs usually contain relatively small quantities of tensile reinforcement, often close to the minimum
10、 amount permit- ted by the relevant building code. For such members, the flexural stiffness of a fully cracked cross section is many times smaller than that of an uncracked cross section, and tension stiffening contribut
11、es greatly to the stiffness after cracking. In design, de- flection and crack control at service-load levels are usually the governing considerations, and accurate modeling of the stiffness after cracking is required. Th
12、e most commonly used approach in deflection calculations involves determining an average effective moment of inertia ?Ie? for a cracked member. Several different empirical equations are available for Ie, including the we
13、ll-known equation developed by Branson ?1965? and recommended in ACI 318 ?ACI 2005?. Other models for tension stiffening are included in Eurocode 2 ?CEN 1992? and the ?British Standard BS 8110 1985?. Recently, Bischoff ?
14、2005? demonstrated that Branson’s equation grossly overestimates the average stiffness of reinforced concrete mem-bers containing small quantities of steel reinforcement, and he proposed an alternative equation for Ie, w
15、hich is essentially com- patible with the Eurocode 2 approach. In this paper, the various approaches for including tension stiffening in the design of concrete structures, including the ACI 318, Eurocode 2, and BS8110 mo
16、dels, are evaluated critically and empirical predictions are compared with measured deflections. Finally, recommendations for modeling tension stiffening in structural design are included.Flexural Response after Cracking
17、Consider the load-deflection response of a simply supported, re- inforced concrete slab shown in Fig. 1. At loads less than the cracking load, Pcr, the member is uncracked and behaves homo- geneously and elastically, and
18、 the slope of the load deflection plot is proportional to the moment of inertia of the uncracked trans- formed section, Iuncr. The member first cracks at Pcr when the extreme fiber tensile stress in the concrete at the s
19、ection of maxi- mum moment reaches the flexural tensile strength of the concrete or modulus of rupture, fr. There is a sudden change in the local stiffness at and immediately adjacent to this first crack. On the section
20、containing the crack, the flexural stiffness drops signifi- cantly, but much of the beam remains uncracked. As load in- creases, more cracks form and the average flexural stiffness of the entire member decreases. If the
21、tensile concrete in the cracked regions of the beam car- ried no stress, the load-deflection relationship would follow the dashed line ACD in Fig. 1. If the average extreme fiber tensile stress in the concrete remained a
22、t fr after cracking, the load- deflection relationship would follow the dashed line AE. In real- ity, the actual response lies between these two extremes and is shown in Fig. 1 as the solid line AB. The difference betwee
23、n the actual response and the zero tension response is the tension stiff- ening effect ??? in Fig. 1?. As the load increases, the average tensile stress in the concrete reduces as more cracks develop and the actual respo
24、nse tends toward the zero tension response, at least until the crack pattern is fully developed and the number of cracks has stabilized. For slabs1Professor of Civil Engineering, School of Civil and Environmental Enginee
25、ring, Univ. of New South Wales, UNSW Sydney, 2052, Australia. Note. Associate Editor: Rob Y. H. Chai. Discussion open until November 1, 2007. Separate discussions must be submitted for individual papers. To extend the cl
26、osing date by one month, a written request must be filed with the ASCE Managing Editor. The manuscript for this techni- cal note was submitted for review and possible publication on May 22, 2006; approved on December 28,
27、 2006. This technical note is part of the Journal of Structural Engineering, Vol. 133, No. 6, June 1, 2007. ©ASCE, ISSN 0733-9445/2007/6-899–903/$25.00.JOURNAL OF STRUCTURAL ENGINEERING © ASCE / JUNE 2007 / 899
28、J. Struct. Eng. 2007.133:899-903.Downloaded from ascelibrary.org by University of Liverpool on 04/19/15. Copyright ASCE. For personal use only; all rights reserved.Table 1. Designation and Details of Slab SpecimensSlabSl
29、ab depth ?mm?Span L ?mm?Effective depth d ?mm?Steel area Ast ?mm2? ?=As/bd fc ? ?MPa? Ec ?MPa?Tensile strength ?MPa?S1 110 3,500 92 141 0.00180 37.3 26,800 3.39S2 110 3,500 91 227 0.00293 37.3 26,800 3.39S3 110 3,500 90
30、354 0.00463 37.3 26,800 3.39S8 110 3,500 89 339 0.00448 52.2 30,700 4.16SS2 102 2,000 81.7 227 0.00327 38.0 27,470 4.42SS3 106.6 2,000 85.9 354 0.00485 38.0 27,470 4.42SS4 106.2 2,000 83.2 339 0.00480 38.0 27,470 4.42Z1
31、100 2,000 82 141 0.00203 38.4 27,390 3.60Z2 100 2,000 81 227 0.00329 38.4 27,390 3.60Z3 100 2,000 80 354 0.00521 38.4 27,390 3.60Z4 100 2,000 79 565 0.00842 48.4 30,500 4.04Table 2. Measured and Predicted Midspan Deflect
32、ions ??? for Test SlabsSlab Mcr ?kN.m? M ?s ?MPa?Experimental ?exp ?mm?ACI 318 Eurocode 2 BS 8110 No-tension stiffening?ACI ?mm? ?ACI/?exp?Euro ?mm? ?Euro/?exp?BS ?mm? ?BS/?exp?nts ?mm? ?nts/?expS1 5.93 1.1 Mcr 528 8.31
33、3.82 0.46 9.21 1.11 20.3 2.44 24.5 2.951.2 Mcr 576 13.2 5.22 0.40 15.1 1.14 23.7 1.80 29.8 2.261.3 Mcr 624 17.5 6.89 0.39 20.5 1.17 26.9 1.54 35.1 2.01S2 5.99 1.1 Mcr 341 6.37 3.79 0.59 7.08 1.11 14.5 2.28 17.2 2.701.2 M
34、cr 372 8.23 5.11 0.62 11.0 1.34 16.7 2.03 20.7 2.521.3 Mcr 403 10.8 6.66 0.62 14.7 1.36 19.0 1.76 24.3 2.25S3 6.07 1.1 Mcr 227 4.78 3.74 0.78 5.72 1.20 10.9 2.28 12.1 2.531.2 Mcr 248 6.09 4.94 0.81 8.42 1.38 12.4 2.04 15
35、.2 2.501.3 Mcr 268 9.03 6.34 0.70 11.0 1.21 14.0 1.55 17.4 1.93S8 7.38 1.1 Mcr 291 6.45 4.00 0.62 6.30 0.98 14.1 2.19 13.2 2.051.2 Mcr 317 8.48 5.28 0.62 10.1 1.19 16.0 1.89 17.8 2.101.3 Mcr 344 11.04 6.84 0.62 13.2 1.20
36、 17.9 1.62 21.1 1.91SS2 6.70 1.1 Mcr 4.26 3.45 1.59 0.46 3.00 0.87 7.21 2.09 5.91 1.711.2 Mcr 465 5.13 2.15 0.42 4.71 0.92 8.72 1.70 7.45 1.451.3 Mcr 503 6.71 2.82 0.42 6.31 0.94 9.16 1.37 9.80 1.46SS3 7.40 1.1 Mcr 290 2
37、.16 1.49 0.69 2.30 1.06 5.09 2.36 4.25 1.971.2 Mcr 316 3.49 1.98 0.57 3.43 0.98 5.76 1.65 5.20 1.491.3 Mcr 343 4.50 2.56 0.57 4.49 1.00 6.44 1.43 6.74 1.50SS4 7.30 1.1 Mcr 309 2.90 1.50 0.52 2.44 0.84 5.42 1.87 4.01 1.38
38、1.2 Mcr 337 3.83 2.01 0.52 3.70 0.97 6.16 1.61 5.68 1.481.3 Mcr 365 4.78 2.61 0.55 4.87 1.02 6.89 1.44 7.38 1.54Z1 5.20 1.1 Mcr 521 3.86 1.61 0.42 3.70 0.96 7.08 1.83 13.8 3.581.2 Mcr 568 6.18 2.18 0.35 6.21 1.01 8.21 1.
39、33 15.1 2.441.3 Mcr 616 9.49 2.94 0.31 8.66 0.91 9.35 0.98 16.2 1.71Z2 5.25 1.1 Mcr 337 2.20 1.59 0.72 2.98 1.35 5.04 2.29 8.11 3.691.2 Mcr 368 3.21 2.05 0.64 4.47 1.39 5.82 1.81 10.3 3.211.3 Mcr 398 4.55 2.84 0.62 6.16
40、1.35 6.62 1.45 11.3 2.48Z3 5.32 1.1 Mcr 225 3.04 1.59 0.52 2.43 0.80 3.78 1.24 6.45 2.121.2 Mcr 245 4.03 2.10 0.52 3.55 0.88 4.34 1.08 7.48 1.861.3 Mcr 266 5.09 2.72 0.53 4.65 0.91 4.91 0.96 7.92 1.56Z4 6.05 1.1 Mcr 166
41、2.38 1.59 0.67 2.15 0.90 3.39 1.42 5.38 2.261.2 Mcr 181 3.45 2.07 0.60 3.13 0.91 3.84 1.11 5.91 1.711.3 Mcr 196 4.15 2.63 0.63 3.85 0.93 4.29 1.03 6.46 1.56??predicted/?exp? Range 0.31–0.81 0.80–1.39 0.96–2.44 1.38–3.69M
42、ean 0.56 1.07 1.68 2.12JOURNAL OF STRUCTURAL ENGINEERING © ASCE / JUNE 2007 / 901J. Struct. Eng. 2007.133:899-903.Downloaded from ascelibrary.org by University of Liverpool on 04/19/15. Copyright ASCE. For personal
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---鋼筋混凝土板的拉伸硬化過程分析(英文).pdf
- 外文翻譯---鋼筋混凝土板的拉伸硬化過程分析(英文).pdf
- 外文翻譯---鋼筋混凝土板的拉伸硬化過程分析
- 外文翻譯---鋼筋混凝土板的拉伸硬化過程分析
- 外文翻譯---鋼筋混凝土板的拉伸硬化過程分析
- 外文翻譯---鋼筋混凝土板的拉伸硬化過程分析.doc
- 外文翻譯---鋼筋混凝土板的拉伸硬化過程分析.doc
- 房屋建筑畢業(yè)設(shè)計(jì)外文翻譯---鋼筋混凝土板的拉伸硬化過程分析
- 鋼筋混凝土外文翻譯
- 鋼筋混凝土外文翻譯
- 土木外文翻譯--- 鋼筋混凝土
- 外文翻譯--對(duì)于鋼筋混凝土框架結(jié)構(gòu)地震響應(yīng)的分析過程 (英文)
- 外文翻譯--爆炸荷載作用下鋼筋混凝土板的失效分析
- 外文翻譯--對(duì)于鋼筋混凝土框架結(jié)構(gòu)地震響應(yīng)的分析過程 (英文).pdf
- 外文翻譯--對(duì)于鋼筋混凝土框架結(jié)構(gòu)地震響應(yīng)的分析過程 (英文).pdf
- 外文翻譯--爆炸荷載作用下鋼筋混凝土板的失效分析(中文)
- 鋼筋混凝土結(jié)構(gòu)的應(yīng)變軟化與拉伸硬化研究.pdf
- 外文-翻譯--隨時(shí)間變化的鋼筋混凝土阻力分析
- 外文翻譯--隨時(shí)間變化的鋼筋混凝土阻力分析
- 外文翻譯--隨時(shí)間變化的鋼筋混凝土阻力分析
評(píng)論
0/150
提交評(píng)論