基于改進的粒子群優(yōu)化算法的小波神經(jīng)網(wǎng)絡(luò).pdf_第1頁
已閱讀1頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、在傳統(tǒng)小波神經(jīng)網(wǎng)絡(luò)中,一般采用的網(wǎng)絡(luò)訓練方法是梯度下降法,這是一種局部搜索算法,容易使網(wǎng)絡(luò)陷入局部極值,所得的網(wǎng)絡(luò)訓練誤差較大?;玖W尤簝?yōu)化小波神經(jīng)網(wǎng)絡(luò)避免了梯度下降法中要求激活函數(shù)可微、對函數(shù)求導的過程計算,但是迭代公式依然復雜,計算量依然比較大。
   本論文將一種改進的粒子群優(yōu)化算法運用于小波神經(jīng)網(wǎng)絡(luò),以更小的種群數(shù)和進化世代數(shù)優(yōu)化了小波神經(jīng)網(wǎng)絡(luò)中的各個參數(shù),并將該方法應(yīng)用于曲線擬合仿真實驗。實驗表明,該算法能減少迭代次

2、數(shù)、提高收斂精度,是小波神經(jīng)網(wǎng)絡(luò)的有效訓練算法,獲得了非常好的優(yōu)化效果。本文一共包括六章。
   第一章主要介紹目前國內(nèi)外小波神經(jīng)網(wǎng)絡(luò)的發(fā)展和研究現(xiàn)狀,并闡述本文所做研究的背景、主要工作和創(chuàng)新。第二章主要介紹了小波神經(jīng)網(wǎng)絡(luò)的基本原理及幾種常見的訓練算法。第三章介紹了基本粒子群優(yōu)化算法以及本文用到的改進了的粒子群優(yōu)化算法。第四章主要闡述基于改進的粒子群優(yōu)化算法的小波神經(jīng)網(wǎng)絡(luò)的設(shè)計思想及訓練算法。第五章中,筆者對所設(shè)計的改進的粒子群

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論