外文翻譯---軸流管殼式換熱器殼側(cè)流體進 出口分布擋板的理論研究_第1頁
已閱讀1頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  外文翻譯</b></p><p>  THEORETICAL INVESTIGATION OF FLUID DISTRIBUTOR IN</p><p>  THE INLET/ OUTLET REGION OF SHELL-SIDE OF SHELL-AND-TUBE HEAT EXCHANGER WITHLONGITUDINAL FL

2、OW</p><p>  ZEN G Wen-Liang1,2, HU Xian-ping1, DEN G Xian-h1</p><p>  (1. The Key Lab. of Enhanced Heat Transfer & Energy Conservation of the Ministry of Education , South China University o

3、f Technology , Guangzhou 510640 ,China ; 2. The Chemistry and Materials Department ,Hengyang Normal University , Hengyang  421001 ,China)</p><p>  Abstract:Presents the theoretical investigation of fluid di

4、stributor in the region of inlet/ outlet of shell-side of shell-and-tube heat exchanger with longitudinal flow in this paper . It is advanced the structural optimal mathematical model among the various structural paramet

5、ers of shell-side of heat exchanger. The model provides reference and direction not only for experimental and numerical investigation of this problem, but also for the other process with fluid distribution.</p>&l

6、t;p>  Key words: shell-and-tube heat exchanger; longitudinal flow ; fluid distribution ; structural optimization ; theoretical model</p><p>  CLC Number : TQ051. 5     Document Code :A</p><p>

7、;  0  Introduction</p><p>  Because of such advantages as lower pressure drop of shell-side , larger logarithmic mean temperature difference (LMTD) , eliminating vibration of heat-transfer tubes , and better

8、 overall heat transfer performance , shell-and-tube heat exchangers with axial flow have become more popular in various are as of industrial process comparing with shell-and-tube heat exchangers with segment baffles. Wit

9、h the scale of industrial production devices become lager and larger , heat exchanger as a type of un</p><p>  1  Physical Model</p><p>  The overall shell-side structural drawing and the positi

10、on of fluid flow distributor of shell-and-tube heat exchanger with axial flow are shown as Fig. 1 (a) . Fig. 1 (b) is the sketch map of shell-side flow distributor structure. In fact , it is easily to understand the flui

11、d distributor structure as that is a specified punched ratio board punched many mini-ostioles on it from the Fig. 1 (b) . The purpose of theoretical investigation is to found a mathematical model which brings out the opt

12、imal</p><p>  Fig. 1  Schematic drawing of shell side configuration of shell and tube</p><p>  heat exchangers with axial flow</p><p>  In order to express t he researched physical

13、model more concisely, it is be treated as a rectangle heat</p><p>  exchanger with axial flow when we take into account the partial unit and its inlet and outlet only. The</p><p>  heat exchange

14、r is made up of 36 tubes specification of φ25 mm ×2. 5 mm ×1 000 mm. The exterior dimension of heat exchanger is a cube wit h t he dimension of 360 mm ×120 mm ×1 000 mm. The elevation of heat exchange

15、r is shown in Fig. 2 (a) . Arrangement styles and parameter of tubes is shown in Fig. 2(b) . </p><p>  2  Mathematical Model</p><p>  In order to found the mathematical model in theoretical meth

16、od, a theoretical analysis model must be built firstly as Fig. 3. The following assumptions and illumination are necessary for modeling fluid flowing through the inlet region and distributor. </p><p>  (1)

17、 Many mini-ostioles be punched in the fluid dist ributed baffle, and diameter of mini-ostioles is infinitesimal .</p><p>  (2) Punched ratio of distributed baffle is a continuous function with x coordinate.&

18、lt;/p><p>  (3) Fluid flow in the x direction as shown in Fig. 3.</p><p>  (4) Fluid flow velocity through distributed baffle is uniform.</p><p>  Based above assumptions and next anal

19、ysis , it is easy to deduce the velocity distribution of x direction and pressure drop of x direction , z direction ,and x-z direction respectively.</p><p>  2. 1  Velocity dist ribution of x coordinate</

20、p><p>  Mass balance Equation of t he infinitesimal is shown in Fig. 4 , and the differential Equation of x </p><p>  Fig. 4  Schematic Drawing of analyzed area</p><p>  direction velo

21、city is obtained as Equa. (1) :</p><p><b>  (1)</b></p><p>  Where A x and A z denote the area of x coordinate and z coordinate , respectively.</p><p><b>  And;<

22、;/b></p><p><b>  (2)</b></p><p>  The boundary condition is: x = X wit h u( x) = 0 ,so t he integral of Equa. (2) can be expressed as follows :</p><p><b>  (3)&

23、lt;/b></p><p><b>  (4)</b></p><p>  2. 2  Pressure drop of x coordinate</p><p>  The energy balance Equation of t he infinitesimal area is shown in Fig. 4. It s diffe

24、rential Equation of</p><p>  x direction pressure drop can be obtained as follow :</p><p><b>  (5) </b></p><p>  Where DH is hydraulic diameter of shell-side.</p>

25、;<p>  The boundary condition is x = 0 wit h Δp ( x) = 0 , so t he integral of t he Equa. (5) can be expressed as :</p><p><b>  (6)</b></p><p><b>  (7)</b></p&g

26、t;<p>  2. 3  Pressure drop of x2z direction</p><p>  According to distribution and local flow pressure drop of fluid flow from x direction turn to z direction , we can obtain it s local pressure drop

27、 Equation as follow :</p><p><b>  (8)</b></p><p>  2. 4  Pressure drop of z coordinate</p><p>  According to the generic Equation of local pressure drop of fluid , we ca

28、n obtain it s local pressure</p><p>  drop Equation of fluid flow through mini2ostioles of distributor baffle in z direction as follow :</p><p><b>  (9)</b></p><p>  Whe

29、re A ( x) denote punched ratio as a f unction of independent variable x.</p><p>  2. 5  Homo-distribution Equation</p><p>  It is well known that t he condition of homo-distribution of fluid flo

30、w through distributor baffle can be deduced by mechanical energy balance Equation from inlet to cross section of outlet . The basic homo-distribution Equation is shown as follow :</p><p><b>  (10) <

31、/b></p><p>  2. 6  Analysis and solution</p><p>  Combining Equa.(7) , (8) , (9) with Equa. (10) , it will obtain the following Equation :</p><p><b>  (11)</b></p&

32、gt;<p>  When x = X ,t hen it can be deduced the pressure drop of boundary condition :</p><p><b>  , and </b></p><p>  Putting the pressure drop under x = X into Equa. (10) ,

33、 then it can be deduced the following Equation :</p><p><b>  (12)</b></p><p>  Associating with Equa. (11) and Equa. (12), and simplifying expression , t hen it can be deduced the fo

34、llowing Equation :</p><p><b>  (13)</b></p><p>  Under the ideal model, optimal punched ratio can be expressed as follow :</p><p><b>  (14)</b></p>&l

35、t;p>  3  Mathematical Model of In-line-square Aligned Tube Bundle</p><p>  For the in-line-square aligned tube bundle of shell-side of shell-and-tube heat exchanger, we define</p><p>  as tub

36、e pitch , d as outer diameter , and L as installation distance. So tube rows of shell-side under in-line-square aligned can be expresses as ,: , and putting them into Equa. (4), then the velocity of x direction can be ex

37、pressed as : (15)</p><p>  According to the Equa. (7), (8) , and (9) , the pressure drop of x direction , x-z direction , and z direction at in-line-square aligned condition of shell-side can als

38、o be written as Equa. (16), (17) and (18) ,respectively :</p><p><b>  (16)</b></p><p>  Where denotes local pressure drop coefficient of crossing a t ube at t he in-line-square alig

39、ned.</p><p><b>  (17) </b></p><p><b>  (18)</b></p><p>  Put ting Equa. (16) , (17) and (18) into Equa. (10), it can be deduced as follow.</p><p

40、><b>  (19)</b></p><p>  When x = X , it can be deduced t he pressure drop of boundary condition as follow :</p><p><b>  , and </b></p><p>  And p ut ting

41、 t hem into Equa. (10) , then it can be deduced the following Equation :</p><p><b>  (20)</b></p><p>  Associating with Equa. (19) and Equa. (20), and simplifying expression , t hen

42、it can be deduced following Equation :</p><p><b>  (21)</b></p><p>  Under the in-line-square aligned tube bundle of shell-side of shell-and-tube heat exchanger, optimal punched rati

43、o of fluid dist ributor in the inlet or outlet region can be expressed as follow :</p><p><b>  (22)</b></p><p>  In Equa. (15) to Equa. (21), A z and A x can be expressed as follows

44、:</p><p><b>  (23)</b></p><p><b>  (24) </b></p><p>  It define ,and denote the ratio of out diameter of tube to tube pitch , putting it and Equa. (23)and (2

45、4) into Equa. (22) ,it will be deduced follow Equation</p><p><b>  (25) </b></p><p>  From Equa. (25), it has been shown that the optimal punched ratio of fluid distributor related t

46、o many factors which can be classified into two aspect s. One aspect is struct ural parameter of heat exchanger of shell-side such as out-diameter of tube, tube pitch , rows of tube buddle , cut length of distributor, an

47、d tube arrangement style. The other aspect is operating characteristic such as Reynolds number which can changer local pressure drop coefficient.</p><p>  Although a mathematical model of shell-side fluid fl

48、ow homo-distribution be found , and the model shows the relationship of optimal punched ratio to structural parameter of heat exchanger and operating characteristic , but its correctness need to be validated by numerical

49、 and experimental methods. Future investigation will go on in numerical and experimental methods respectively.</p><p>  4  Conclusions</p><p>  Through founding mathematical model and above anal

50、ysis, it is concluded as following :</p><p>  (1) For the in-line-square aligned tube bundle of shell-side , main factors of fluid flow maidist -ribution are as such punched ratio of distributor , out-diamet

51、er of tube , tube pitch , rows of tube buddle , cut length of distributor , and tube arrangement style.</p><p>  (2) According to Equa. (25), it is easy to design a optimal fluid flow dist ributor .</p>

52、;<p>  (3) The pressure drop of shell-side is cube of rows which fluid cross flowed. To decrease pressure</p><p>  drop of shell-side must decrease rows of fluid cross flowed.</p><p>  Re

53、ferences</p><p>  [ 1 ] Zhou Sen2Quan. The analysis of heat exchanger performance wit h temperature nonuniformity of inlet [J ] . Gongcheng Rewuli Xue-bao , 1994 ,15 (4) :8211.</p><p>  [2 ] Chi

54、ou J . P. . The effect of nonuniformity of inlet fluid temperature on t he t hermal performance of cross-flow heat exchanger [ C] .Proc. of 7th international heat transfer conf . , 1982 :1792126.</p><p>  [

55、3 ] Ulrich Mohr , Horst Gelbe. Velocity dist ribution and vibration excitation in tube bundle heat exchangers[J ] . Int . J . Thermal . Science. ,2000 ,39 (4) :4142421.</p><p>  [ 4 ] S. S. Mousavi , K. Hoom

56、an. Heat and fluid flow in ent rance region of a channel with staggered baffles[J ] . Energy Conversion and Management ,2006 , 47 (18) :2 01122 019.</p><p>  [ 5 ] L. Maharaj , J . Pocock , B. K. Loveday. Th

57、e effect of dist ributor configuration on the hydrodynamics of t he teetered bed separator</p><p>  軸流管殼式換熱器殼側(cè)流體進/ 出口分布</p><p><b>  擋板的理論研究</b></p><p>  曾文良1 ,2 , 胡顯平1 ,

58、 鄧先和1</p><p>  (1. 華南理工大學(xué)傳熱強化與過程節(jié)能教育部重點實驗室, 廣東廣州 510640 ;2. 衡陽師范學(xué)院化學(xué)與材料科學(xué)系, 湖南衡陽 421001)</p><p>  摘 要:大型、超大型殼程軸流管殼式換熱器殼側(cè)流體的流動分布不均嚴重影響著換熱器的整體傳熱性能,而在殼側(cè)入口和出口位置安裝流體分布擋板是解決這一問題的方法之一. 文中從流體分布擋板的影響參數(shù)入手

59、,從理論上推導(dǎo)了擋板的開孔率與各種結(jié)構(gòu)參數(shù)之間的數(shù)學(xué)模型,并且推導(dǎo)出優(yōu)化的擋板設(shè)計參數(shù)方程,為殼側(cè)流體的實驗研究與數(shù)值研究提供了參考與方向.</p><p>  關(guān)鍵詞:管殼式換熱器; 軸向流; 流體分布; 結(jié)構(gòu)優(yōu)化; 理論模型</p><p>  中圖分類號: TQ051. 5     文獻標識碼:A</p><p>  0 介紹 由于這些優(yōu)勢,降低殼程,大

60、對數(shù)平均溫差(數(shù)平均溫差)壓力下降,消除了傳熱管的振動,更好的整體傳熱性能,軸向流管殼式換熱器與部分擋板殼式換熱器相比在各種工業(yè)生產(chǎn)中變得更加受歡迎。隨著工業(yè)生產(chǎn)設(shè)備的規(guī)模變得越來越大,換熱器作為一種工業(yè)生產(chǎn)通用設(shè)備,還需要滿足工業(yè)生產(chǎn)過程的要求,以及換熱器傳熱能力越來越大。由于對殼管式換熱器管的長度是由加工工藝條件決定,有必要擴大殼端直徑,以擴大傳熱能力。隨著換熱器的直徑的增大和長徑比的減小(L/D),殼程流體流動分布不均變得更難以控

61、制和殼層的壓力降增長的更快,這不僅降低了換熱器整體傳熱性能,而且也引起了傳熱管的振動。這些都是被ZHOU Sen-quan ,Chiou J . P ,Ulrich Mohr and Hor st Gelbe證明的。為了使流體流動同源分布,S. S. Mousavi , K. Hooman and L. Maharaj , J . Pocock , B. K.Loveday已經(jīng)構(gòu)建了一個流體流動分布結(jié)構(gòu)并將其設(shè)置在設(shè)備的進出口區(qū)域。但

62、沒有任何有關(guān)軸流管殼式換熱器流體流動分布的報告,特別是大規(guī)模和超大規(guī)模換熱器。</p><p>  管殼殼端配置與軸流式換熱器示意圖1為了表達研究的物理模型更簡潔,當我們考慮到部分單位和其進口和出口唯一時,我們把它看作一個矩形熱處理軸流換熱器。該換熱器管子是36毫米規(guī)格,尺寸為φ25 mm ×2. 5 mm ×1 000 mm。該換熱器外觀尺寸是維立方體360毫米× 120毫米&#

63、215; 1 000毫米。該換熱器高程圖2(a)所示,布置風(fēng)格和管參數(shù)如圖2(b)所示。</p><p>  數(shù)學(xué)模型為了找到了理論方法,數(shù)學(xué)模型理論分析模型,必須首先建立如圖(3)所示。以下假設(shè)的建模和光照是通過進口和分配器區(qū)域流體流動必要的。</p><p> ?。?)許多小孔是分布在流體擋板上,小孔直徑是微不足道的。(2)分布式擋板打孔比率是一個連續(xù)x函數(shù)。(3)在x方向流體流

64、量,如圖所示3所示。(4)流體流速通過均勻分布擋板?;谏鲜黾僭O(shè)和下一步的分析,可以很容易地分別推導(dǎo)出x方向的速度分布和壓力降的x方向,z方向和x-z方向。2.1速度分布的x坐標質(zhì)量平衡方程的無窮小如圖4所示 ,差分方程的X方向的方程式:</p><p><b> ?。?) </b></p><p>  用和分別表示X坐標和Z坐標,有</p>

65、<p><b> ?。?)</b></p><p>  邊界條件是:x = X 和 u( x) = 0,所以方程式(2)用積分可表示為:</p><p><b> ?。?)</b></p><p><b>  (4)</b></p><p>  2.2 X坐標的

66、壓力降</p><p>  無窮小面積的能量平衡方程,如圖4所示。它差分方程x方向的壓力降,可表示為: (5)</p><p>  殼側(cè)的水力直徑,邊界條件是x = 0和Δp ( x) = 0,所以他的積分方程式(5)可以表示為:</p><p><b>  (6)</b&g

67、t;</p><p><b>  (7)</b></p><p>  2.3 X-Z方向的壓力降</p><p>  據(jù)當?shù)亓髁糠植己土鲃拥牧黧w壓力降,由x方向轉(zhuǎn)到z方向,我們可以得到如下方程的局部壓力降:</p><p><b> ?。?)</b></p><p>  

68、2.4 Z坐標的壓力降</p><p>  據(jù)當?shù)氐牧黧w壓降通用公式,我們可以得到它的流體通過的小型分流器擋板孔當?shù)貕航捣匠淘趜方向如下:</p><p><b> ?。?) </b></p><p>  2.5 同質(zhì)分配公式</p><p>  眾所周知的是,同源流體通過分流器可以通過機械擋板能量平衡方程推導(dǎo)出

69、進口交叉出口段的流量分布情況。基本同質(zhì)分配公式如下所示:</p><p><b> ?。?0)</b></p><p><b>  分析和解決方案</b></p><p>  聯(lián)合(7),(8),(9)和(10)式,它會得到如下方程:</p><p><b> ?。?1)</b>

70、;</p><p>  當x = X,可以推斷壓降的邊界條件:</p><p><b>  ,和</b></p><p>  把壓降下x = X代入方程(10),那么我們可以得出以下方程:</p><p><b> ?。?2)</b></p><p>  聯(lián)系方程式(11)和

71、方程式(12),并簡化表達,那么可以得出以下方程:</p><p><b>  (13)</b></p><p>  在理想的模型,優(yōu)化沖壓比可表示如下:</p><p> ?。?4) </p><p>  3 數(shù)學(xué)模型在一平方米上的管束</p><p>  對于管殼式換熱器的殼側(cè)

72、的內(nèi)插管束,我們定義為管束管間距,d為外徑和為安裝距離。因此殼下側(cè)管排線,方形排列,可表示為:,,并把它們代入方程式(4),則x方向的速度可以表示為:</p><p><b>  (15)</b></p><p>  根據(jù)方程式(7),(8),(9),壓降的x方向,x-z方向和z方向在內(nèi)插管束對齊殼側(cè)方向的條件也可以分別寫成方程式(16),(17)和(18):<

73、/p><p> ?。?6) </p><p>  其中表示當?shù)貕航翟诠苁€一方對齊的管系數(shù)</p><p><b> ?。?7)</b></p><p><b>  (18)</b></p><p>  把(16)(17)(18)式代入方程(10)式,可簡化得到:<

74、;/p><p><b> ?。?9)</b></p><p>  當 x = X 時,可以推導(dǎo)出如下的邊界條件壓降:</p><p><b>  , and </b></p><p>  將他們代入方程(10)可得到下式:</p><p><b>  (20)<

75、/b></p><p>  聯(lián)合方程式(19)和方程式(20),簡化表達,可以推斷公式如下:</p><p><b> ?。?1)</b></p><p>  根據(jù)該對齊殼的管殼式換熱器管束方,最佳流體的分配比例,進口或出口區(qū)域可表示如下:</p><p><b> ?。?2) </b><

76、;/p><p>  從方程(15)式到方程(21), </p><p><b> ?。?3)</b></p><p><b> ?。?4)</b></p><p>  定義,表示管內(nèi)管直徑與管間距之比,把它和方程式(23)(24)代入方程式(22),可得妻方程如下:</p><p&g

77、t;<b> ?。?5)</b></p><p>  從方程式(25)看出,它已被證明是最佳的流體分配沖壓比,有關(guān)的很多因素可劃分為兩個方面。一個方面是熱殼側(cè)換熱器結(jié)構(gòu)參數(shù),如外管直徑,管間距,管的排列,分流結(jié)構(gòu)切割長度,管安排的風(fēng)格。另一個方面是操作特性,如雷諾數(shù)可兌換當?shù)貕航迪禂?shù)。</p><p>  雖然殼側(cè)流體流動同源分布的數(shù)學(xué)模型已經(jīng)發(fā)現(xiàn),以及模型顯示了最佳

78、的比例關(guān)系,以沖壓換熱器結(jié)構(gòu)參數(shù)和運行特點,但它的正確性,需要通過數(shù)值和實驗方法驗證。調(diào)查將會分別用數(shù)值和實驗方法繼續(xù)進行。</p><p><b>  總結(jié)</b></p><p>  通過建立數(shù)學(xué)模型和上述分析,可以得出結(jié)論如下:</p><p> ?。?)對于管束對齊殼側(cè),流體流動的主要因素是外管直徑,管間距,管束排列,分流結(jié)構(gòu)切割長度,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論