版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 附錄: </b></p><p><b> 畢業(yè)設(shè)計(jì)外文翻譯</b></p><p> 院 (系) 建筑工程學(xué)院 </p><p> 專 業(yè) 土 木 工 程 </p><p> 班 級
2、 </p><p> 姓 名 </p><p> 學(xué) 號 </p><p> 導(dǎo) 師 </p><p> 2011年 4月15日</p>
3、<p><b> 英文:</b></p><p> High-Rise Buildings and Structural Design</p><p><b> Abstract:</b></p><p> It is difficult to define a high-rise building .
4、 One may say that a low-rise building ranges from 1 to 2 stories . A medium-rise building probably ranges between 3 or 4 stories up to 10 or 20 stories or more . Although the basic principles of vertical and horizontal s
5、ubsystem design remain the same for low- , medium- , or high-rise buildings , when a building gets high the vertical subsystems become a controlling problem for two reasons . Higher vertical loads will require larger col
6、umns , walls</p><p> Key Words:High-Rise Buildings Structural Design Framework Shear Seismic System</p><p> Introduction</p><p> The vertical subsystems in a high-rise buil
7、ding transmit accumulated gravity load from story to story , thus requiring larger column or wall sections to support such loading . In addition these same vertical subsystems must transmit lateral loads , such as wind o
8、r seismic loads , to the foundations. However , in contrast to vertical load , lateral load effects on buildings are not linear and increase rapidly with increase in height . For example under wind load , the overturning
9、 moment at the ba</p><p> When the structure for a low-or medium-rise building is designed for dead and live load , it is almost an inherent property that the columns , walls , and stair or elevator shafts
10、can carry most of the horizontal forces . The problem is primarily shear resistance . Moderate addition bracing for rigid frames in“short”buildings can easily be provided by filling certain panels ( or even all panels )
11、without increasing the sizes of the columns and girders otherwise required for vertical loads.</p><p> Unfortunately , this is not is for high-rise buildings because the problem is primarily resistance to m
12、oment and deflection rather than shear alone . Special structural arrangements will often have to be made and additional structural material is always required for the columns , girders , walls , and slabs in order to ma
13、de a high-rise buildings sufficiently resistant to much higher lateral deformations . </p><p> As previously mentioned , the quantity of structural material required per square foot of floor of a high-rise
14、buildings is in excess of that required for low-rise buildings . The vertical components carrying the gravity load , such as walls , columns , and shafts , will need to be strengthened over the full height of the buildin
15、gs . But quantity of material required for resisting lateral forces is even more significant .</p><p> With reinforced concrete , the quantity of material also increases as the number of stories increases .
16、 But here it should be noted that the increase in the weight of material added for gravity load is much more sizable than steel , whereas for wind load the increase for lateral force resistance is not that much more sinc
17、e the weight of a concrete buildings helps to resist overturn . On the other hand , the problem of design for earthquake forces . Additional mass in the upper floors will give r</p><p> In the case of eithe
18、r concrete or steel design , there are certain basic principles for providing additional resistance to lateral to lateral forces and deflections in high-rise buildings without too much sacrifire in economy . </p>
19、<p> 1、Increase the effective width of the moment-resisting subsystems . This is very useful because increasing the width will cut down the overturn force directly and will reduce deflection by the third power of t
20、he width increase , other things remaining cinstant . However , this does require that vertical components of the widened subsystem be suitably connected to actually gain this benefit.</p><p> 2、Design subs
21、ystems such that the components are made to interact in the most efficient manner . For example , use truss systems with chords and diagonals efficiently stressed , place reinforcing for walls at critical locations , and
22、 optimize stiffness ratios for rigid frames . </p><p> 3、Increase the material in the most effective resisting components . For example , materials added in the lower floors to the flanges of columns and co
23、nnecting girders will directly decrease the overall deflection and increase the moment resistance without contributing mass in the upper floors where the earthquake problem is aggravated . </p><p> 4、Arrang
24、e to have the greater part of vertical loads be carried directly on the primary moment-resisting components . This will help stabilize the buildings against tensile overturning forces by precompressing the major overturn
25、-resisting components . </p><p> 5、The local shear in each story can be best resisted by strategic placement if solid walls or the use of diagonal members in a vertical subsystem . Resisting these shears so
26、lely by vertical members in bending is usually less economical , since achieving sufficient bending resistance in the columns and connecting girders will require more material and construction energy than using walls or
27、diagonal members . </p><p> 6、Sufficient horizontal diaphragm action should be provided floor . This will help to bring the various resisting elements to work together instead of separately . </p>&l
28、t;p> 7、Create mega-frames by joining large vertical and horizontal components such as two or more elevator shafts at multistory intervals with a heavy floor subsystems , or by use of very deep girder trusses .</p&
29、gt;<p> Remember that all high-rise buildings are essentially vertical cantilevers which are supported at the ground . When the above principles are judiciously applied , structurally desirable schemes can be obt
30、ained by walls , cores , rigid frames, tubular construction , and other vertical subsystems to achieve horizontal strength and rigidity . Some of these applications will now be described in subsequent sections in the fol
31、lowing . </p><p> Shear-Wall Systems</p><p> When shear walls are compatible with other functional requirements , they can be economically utilized to resist lateral forces in high-rise buildi
32、ngs . For example , apartment buildings naturally require many separation walls . When some of these are designed to be solid , they can act as shear walls to resist lateral forces and to carry the vertical load as well
33、. For buildings up to some 20storise , the use of shear walls is common . If given sufficient length ,such walls can economically res</p><p> However , shear walls can resist lateral load only the plane of
34、the walls ( i.e.not in a diretion perpendicular to them ) . Therefore ,it is always necessary to provide shear walls in two perpendicular directions can be at least in sufficient orientation so that lateral force in any
35、direction can be resisted . In addition , that wall layout should reflect consideration of any torsional effect . </p><p> In design progress , two or more shear walls can be connected to from L-shaped or c
36、hannel-shaped subsystems . Indeed , internal shear walls can be connected to from a rectangular shaft that will resist lateral forces very efficiently . If all external shear walls are continuously connected , then the
37、whole buildings acts as a tube , and is excellent Shear-Wall Systems resisting lateral loads and torsion . </p><p> Whereas concrete shear walls are generally of solid type with openings when necessary , st
38、eel shear walls are usually made of trusses . These trusses can have single diagonals , “X”diagonals , or“K”arrangements . A trussed wall will have its members act essentially in direct tension or compression under the a
39、ction of view , and they offer some opportunity and deflection-limitation point of view , and they offer some opportunity for penetration between members . Of course , the inclined members o</p><p> As stat
40、ed above , the walls of elevator , staircase ,and utility shafts form natural tubes and are commonly employed to resist both vertical and lateral forces . Since these shafts are normally rectangular or circular in cross-
41、section , they can offer an efficient means for resisting moments and shear in all directions due to tube structural action . But a problem in the design of these shafts is provided sufficient strength around door openin
42、gs and other penetrations through these elements . Fo</p><p> In many high-rise buildings , a combination of walls and shafts can offer excellent resistance to lateral forces when they are suitably located
43、ant connected to one another . It is also desirable that the stiffness offered these subsystems be more-or-less symmertrical in all directions .</p><p> Rigid-Frame Systems</p><p> In the desi
44、gn of architectural buildings , rigid-frame systems for resisting vertical and lateral loads have long been accepted as an important and standard means for designing building . They are employed for low-and medium means
45、for designing buildings . They are employed for low- and medium up to high-rise building perhaps 70 or 100 stories high . When compared to shear-wall systems , these rigid frames both within and at the outside of a build
46、ings . They also make use of the stiffness in bea</p><p> Frequently , rigid frames will not be as stiff as shear-wall construction , and therefore may produce excessive deflections for the more slender hig
47、h-rise buildings designs . But because of this flexibility , they are often considered as being more ductile and thus less susceptible to catastrophic earthquake failure when compared with ( some ) shear-wall designs . F
48、or example , if over stressing occurs at certain portions of a steel rigid frame ( i.e.,near the joint ) , ductility will allow the </p><p> In the case of concrete rigid frames ,there is a divergence of op
49、inion . It true that if a concrete rigid frame is designed in the conventional manner , without special care to produce higher ductility , it will not be able to withstand a catastrophic earthquake that can produce force
50、s several times lerger than the code design earthquake forces . Therefore , some believe that it may not have additional capacity possessed by steel rigid frames . But modern research and experience has indicated t</
51、p><p> Of course , it is also possible to combine rigid-frame construction with shear-wall systems in one buildings 。For example , the buildings geometry may be such that rigid frames can be used in one direct
52、ion while shear walls may be used in the other direction。Above states is the high-rise construction ordinariest structural style. In the design process, should the economy practical choose the reasonable form as far as p
53、ossible.</p><p><b> 高層建筑及結(jié)構(gòu)設(shè)計(jì)</b></p><p><b> 摘要:</b></p><p> 高層建筑的定義很難確定。可以說1-2層的建筑物為低層建筑,中層建筑也許為3-4層至10-20層的或者更多層數(shù)的建筑物。盡管在基本原理上,高層建筑的豎向和水平構(gòu)件的設(shè)計(jì)同低層及多層建筑的設(shè)
54、計(jì)沒什么區(qū)別,但當(dāng)要使豎向構(gòu)件的設(shè)計(jì)成為高層設(shè)計(jì)有兩個控制性的因素:首先,高層建筑需要較大的柱體、墻體和井筒;更重要的是側(cè)向力所產(chǎn)生的傾覆力矩和剪力變形要大的多,必要要有謹(jǐn)慎的設(shè)計(jì)來保證。</p><p> 關(guān)鍵詞: 高層建筑 結(jié)構(gòu)設(shè)計(jì) 框架 剪力墻 抗震體系</p><p><b> 概 述</b></p><p> 高
55、層建筑的豎向構(gòu)件從上到下逐層對累積的重力和荷載進(jìn)行傳遞,這就要有較大尺寸的柱體或者墻體來進(jìn)行承載。此外,這些構(gòu)件還要將風(fēng)荷載及地震荷載等水平荷載傳給基礎(chǔ)。然而,水平荷載的分布不同于豎向荷載,它們是非線性的,并且沿著建筑物高度的增加而迅速地增加。例如,在其他條件都相同時,風(fēng)荷載在建筑物底部引起的傾覆力矩隨建筑物高度近似地成平方規(guī)律變化,而在頂部的水平位移與其高度的四次方成正比。地震荷載產(chǎn)生的效應(yīng)更為明顯。</p><p
56、> 對于低層和多層建筑物結(jié)構(gòu)設(shè)計(jì)只需考慮恒荷載和部分動荷載時,建筑物的柱、墻、樓梯或電梯等就自然能承受大部分水平力。所考慮的問題主要是抗剪問題。對于現(xiàn)代“短”建筑物里的鋼架系統(tǒng)支撐設(shè)計(jì),如無特殊承載需要,無需加大柱和梁的尺寸,而通過增加規(guī)定尺寸的板(或甚至所有面板)就可以輕而易舉地實(shí)現(xiàn)。</p><p> 不幸的是,對于高層建筑首先要解決的不僅僅是抗剪問題,比其更重要的還有抵抗力矩和抵抗變形問題。高層建
57、筑中的柱、梁、墻及板等經(jīng)常需要采用特殊的結(jié)構(gòu)布置和特殊的材料,以抵抗相當(dāng)高的側(cè)向荷載以及變形。</p><p> 如前所述,在高層建筑中每平方英尺建筑面積結(jié)構(gòu)材料的用量要高于低層建筑。支撐重力荷載的豎向構(gòu)件,如墻、柱及井筒,在沿建筑物整個高度方向上都應(yīng)予以加強(qiáng)。用于抵抗側(cè)向荷載的材料數(shù)量要求更重要。</p><p> 對于鋼筋混凝土建筑,對材料的數(shù)量要求也隨著建筑物層數(shù)的增加而增加。在
58、此應(yīng)當(dāng)注意的是,因混凝土材料質(zhì)量增加而帶來的建筑物自重的增加,要比鋼結(jié)構(gòu)增加得多,而為抵抗風(fēng)荷載的能力而增加的材料用量卻不是那么多,因?yàn)榛炷磷陨淼闹亓靠梢缘挚箖A覆力矩。另一方面,混凝土建筑自重的增加,將會加大抗震設(shè)計(jì)的難度。在地震荷載作用下,上層樓體的附加質(zhì)量的增加將會使整體側(cè)向荷載劇增。</p><p> 無論對于混凝土結(jié)構(gòu)設(shè)計(jì),或者對于鋼結(jié)構(gòu)設(shè)計(jì),下面這些基本的原則都有助于在不需要增加太多成本的前提下增強(qiáng)
59、建筑物抵抗側(cè)向荷載的能力。</p><p> 1、 增加抗彎構(gòu)件的有效寬度。由于當(dāng)其他條件不變時,寬度的增加能夠直接減小扭矩,并以寬度增量的三次冪形式減小變形,因此這一措施非常實(shí)用。但是這項(xiàng)措施必須保證加寬后的豎向承重構(gòu)件非常有效地連接才能收到切實(shí)利益。</p><p> 2、 在設(shè)計(jì)構(gòu)件時,盡可能有效地使它們加強(qiáng)相互間的作用力。例如,可以采用具有有效應(yīng)力狀態(tài)的弦桿和桁架體系;也可在墻
60、的關(guān)鍵位置加置拉結(jié)鋼筋;以及最優(yōu)化鋼架的剛度比等措施。</p><p> 3、 增加最有效的抗彎構(gòu)件的截面材料。例如,增加較低層柱以及連接大梁的翼緣截面,將可直接減少側(cè)向位移和增加抗彎能力,而不會加大上層樓面的質(zhì)量,否則,地震問題將會(因樓層質(zhì)量增加)被加劇。</p><p> 4、 通過設(shè)計(jì)安排使大部分豎向荷載,直接作用于主要的抗彎構(gòu)件。這樣通過預(yù)壓主要的抗傾覆構(gòu)件,可以使建筑物在傾
61、覆拉力的作用下保持穩(wěn)定。</p><p> 5、 通過合理地放置實(shí)心墻體及在豎向構(gòu)件中使用斜撐構(gòu)件,可以有效地抵抗每層的局部剪力。但僅僅通過豎向構(gòu)件進(jìn)行抗剪是不經(jīng)濟(jì)的,因?yàn)槭怪傲河凶銐虻目箯澞芰?,比用墻或斜撐需要更多材料和施工工程量?lt;/p><p> 6、 每層應(yīng)加設(shè)充足的水平隔板。這樣就會使各種抗力構(gòu)件更好地在相互作用,而不是單獨(dú)工作。</p><p>
62、 7、 在中間轉(zhuǎn)換層通過大型豎向和水平構(gòu)件及重樓板創(chuàng)建連接成大框架,或者采用深梁體系。</p><p> 應(yīng)當(dāng)注意的是,所有高層建筑的本質(zhì)都是由地面支撐的懸臂結(jié)構(gòu)。如何合理地運(yùn)用上面所提到的原則,就可以利用合理地布置墻體、核心筒、框架、筒式結(jié)構(gòu)和其他豎向結(jié)構(gòu)分體系,使建筑物取得足夠的水平承載力和剛度。本文后面將對這些原理的應(yīng)用做介紹。</p><p><b> 剪力墻結(jié)構(gòu)&l
63、t;/b></p><p> 當(dāng)剪力墻能夠與其他功能需求兼容時,高層建筑中采用剪力墻可以經(jīng)濟(jì)地進(jìn)行高層建筑的抗側(cè)向荷載設(shè)計(jì)。例如,住宅樓需要很多隔墻,如果這些隔墻都設(shè)計(jì)為實(shí)體的,那么他們可以起到剪力墻的作用,既能抵抗側(cè)向荷載,又能承受豎向荷載。對于20層以上的建筑物,剪力墻的采用極為常見。如果給與足夠的長度,剪力墻能夠經(jīng)濟(jì)有效地抵抗30-40層甚至更多樓層的水平荷載。</p><p&g
64、t; 但是,剪力墻只能抵抗平行于墻平面的荷載(也就是說不能抵抗垂直于墻的荷載)。因此有必要經(jīng)常在兩個相互垂直的方向設(shè)置剪力墻,或者在盡可能多的方向布置,以用來抵抗各個方向的側(cè)向荷載。此外,墻體設(shè)計(jì)還應(yīng)考慮扭轉(zhuǎn)的問題。</p><p> 在設(shè)計(jì)過程中,兩片或者更多的剪力墻會布置成L型或者槽形。實(shí)際上,四片內(nèi)剪力墻可以連接到一個矩形軸(聯(lián)結(jié)成矩形),以更有效地抵抗側(cè)向荷載。如果所有外部剪力墻連續(xù)都連接起來,整個建
65、筑物就像是一個筒體,即是精良的剪力墻系統(tǒng),將會具有很強(qiáng)的抵抗水平荷載和抵抗扭矩的能力。</p><p> 通?;炷辆图袅Χ际菍?shí)體的,并在有要求時開洞,而鋼筋剪力墻常常是做成桁架型式。這些桁架上可能布置成單斜撐、X斜撐或K斜撐。在側(cè)向力作用下這些桁架的組合構(gòu)件受到拉或壓力(即成拉桿或壓桿)。從強(qiáng)度和變形控制角度來說,桁架有著很好的功效,并且管道可以在構(gòu)件之間穿過。當(dāng)然,鋼桁架墻的斜向構(gòu)件在墻體上要正確放置,以
66、免妨礙開窗、循環(huán)以及管道穿過這些墻。</p><p> 如上所述,電梯墻、樓梯間及設(shè)備豎井都可以形成筒狀體,常常用它們同時抵抗豎向荷載和水平荷載。這些筒體的橫斷面一般呈矩形或圓形,由于筒結(jié)構(gòu)作用,筒狀結(jié)構(gòu)能夠提供有效地方式進(jìn)行各個方向上的抗彎和抗剪。不過在這樣的結(jié)構(gòu)設(shè)計(jì)中存在的一個問題是,如何保證在門洞口和其他孔洞的強(qiáng)度。對于鋼筋混凝土結(jié)構(gòu),通過使用特殊的鋼筋配置在這些孔洞的周圍(即布置加強(qiáng)筋)。對于鋼剪力墻,
67、則要求在開洞處有更重更強(qiáng)的節(jié)點(diǎn)連接,以抵抗洞口變形。</p><p> 對于很多高層建筑,互相合理地布置與連接墻體和筒體,會起到很好的抵抗側(cè)向荷載的作用。還要求由這些結(jié)構(gòu)分體系提供的剛度在各個方向上應(yīng)大體對稱。</p><p><b> 框架結(jié)構(gòu)</b></p><p> 在建筑物結(jié)構(gòu)設(shè)計(jì)中,用于抵抗豎向和水平荷載的框架結(jié)構(gòu),常作為一個重
68、要且標(biāo)準(zhǔn)的型式而被采用來設(shè)計(jì)建筑。它們適用于低層、多層建筑物,可能用于70-100層高的高層建筑物。同剪力墻結(jié)構(gòu)相比,這種結(jié)構(gòu)更適合在建筑物的內(nèi)部或者外圍的墻體上開設(shè)矩形孔洞。同時它還能充分利用建筑物內(nèi)在任何情況下都要采用的梁和柱的剛度,但當(dāng)柱子與梁剛性連接時,通過框架受彎來抵抗水平和豎向荷載會使這些柱子的承載能力變得更大。</p><p> 大多情況下,框架的剛度不如剪力墻,因此對于細(xì)長的建筑物設(shè)計(jì)將會出現(xiàn)過
69、度變形。但正是因?yàn)檫@種柔性,使得其與剪力墻結(jié)構(gòu)相比具有更大的延性,因而地震荷載下不易發(fā)生事故。例如,如果框架局部某處(例如連接處附近)出現(xiàn)超應(yīng)力時,那么其延性就會允許整個結(jié)構(gòu)位移多一點(diǎn),但即使在結(jié)構(gòu)上承受比預(yù)期更大的力量也絕不會(使建筑物)崩潰。因此,框架結(jié)構(gòu)常被視為最好的高層抗震結(jié)構(gòu)型式。另一方面,設(shè)計(jì)得好的剪力墻結(jié)構(gòu)也不可能倒塌。</p><p> 對于混凝土框架結(jié)構(gòu),還存在較大的分歧。的確,如果混凝土框架
70、按傳統(tǒng)方式設(shè)計(jì),不進(jìn)行特殊的延性設(shè)計(jì),那么它將很難承受比設(shè)計(jì)標(biāo)準(zhǔn)值大很多倍的地震荷載的沖擊。因此,很多人認(rèn)為它不具備鋼框架所具備的超載能力。不過最新研究和實(shí)驗(yàn)表明,當(dāng)混凝土中放入足夠的鋼箍和節(jié)點(diǎn)鋼筋時 ,混凝土框架框架也能表現(xiàn)出很好的延性。新建筑規(guī)范對所謂延性混凝土框架有專門的規(guī)定。然而,現(xiàn)在這些規(guī)范往往要求在框架的某處增設(shè)過多的鋼筋,這就造成(潛在的)阻塞和增加施工的難度。盡管這樣,混凝土框架設(shè)計(jì)還是既實(shí)用又經(jīng)濟(jì)的。</p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高層建筑鋼結(jié)構(gòu)設(shè)計(jì)
- 高層建筑結(jié)構(gòu)設(shè)計(jì)
- 高層建筑抗震結(jié)構(gòu)設(shè)計(jì)
- 高層建筑結(jié)構(gòu)設(shè)計(jì)
- 高層建筑的結(jié)構(gòu)設(shè)計(jì)特點(diǎn)及基礎(chǔ)結(jié)構(gòu)設(shè)計(jì)
- [外文翻譯]形狀復(fù)雜的高層建筑的結(jié)構(gòu)設(shè)計(jì)與施工
- 高層建筑鋼結(jié)構(gòu)設(shè)計(jì)探究
- 淺析高層建筑結(jié)構(gòu)設(shè)計(jì)
- 論高層建筑結(jié)構(gòu)設(shè)計(jì)
- 談高層建筑結(jié)構(gòu)設(shè)計(jì)
- 高層建筑連體結(jié)構(gòu)設(shè)計(jì)探討
- 高層建筑結(jié)構(gòu)設(shè)計(jì)初探
- 高層建筑結(jié)構(gòu)設(shè)計(jì)研究
- 高層建筑主體結(jié)構(gòu)設(shè)計(jì)探討
- 淺析高層建筑結(jié)構(gòu)設(shè)計(jì)
- 高層建筑混凝土結(jié)構(gòu)設(shè)計(jì)探討
- 淺談高層建筑結(jié)構(gòu)設(shè)計(jì)
- 高層建筑結(jié)構(gòu)設(shè)計(jì)探析
- 淺析高層建筑的結(jié)構(gòu)設(shè)計(jì)
- 民用高層建筑結(jié)構(gòu)設(shè)計(jì)
評論
0/150
提交評論