教學(xué)相關(guān)外文翻譯_第1頁
已閱讀1頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  原文</b></p><p>  題目:Using “What if..” questions to teach science </p><p><b>  Abstract</b></p><p>  With the widening knowledge base students wi

2、ll need to be more flexible in their learning habits. Traditionally, teaching school science often involves teacher-centred methods like lectures, experimental demonstration or guided inquiry. Plain knowledge disseminati

3、on will not adequately prepare students to cope with the changing world. Hence, schools need to train students to be reflective in their learning habits – that is, getting students to be observant, to generate relevant a

4、lternatives and </p><p>  Introduction</p><p>  The present science curriculum includes a range of student learning outcomes covering laboratory and experimental science (MOE, 2007). Researchers

5、 and scholars had argued that the roles of experiments and practical work in schools should allow students to practice laboratory skills, learn the various investigative processes and acquire first hand experiences in de

6、aling with materials and laboratory wares (Boud, Dunn and Hegarty-Hazel, 1986; Doran et al, 2002; Hegarty-Hazel, 1986; Josephsen, 2003</p><p>  Conducting the lesson</p><p>  Traditionally a les

7、son on experimental science would commence with teacher talk, student evaluation and then possibly, a confirmatory experimental experience in the laboratory.Inquiry-based lessons may tweak the lesson structure a bit, wit

8、h the teacher starting a learning task by asking a question.For example, </p><p>  “If you are stranded in the open sea on a small boat, how would you go about making some fresh water to drink from the sea w

9、ater around you?(Assuming you have the essential laboratory wares with you.)”</p><p>  The teacher may then follow up by facilitating a class discussion and end with the teacher summarizing and contextualizi

10、ng the discussion to fit the curricular requirements.</p><p>  Mortimer and Scott (2003) in their book, Making Meaning in Secondary School Science, suggested that students should engage in some form of dialo

11、gic activity if they are to develop an understanding of a science topic.In this respect, classroom talk, learning and meaning making would not make strange bedfellows but are essential features in the science classroom t

12、hat would ensure students gain some impactful learning experiences.</p><p>  The lesson, which the present discussion is based on, involved both the traditional classroom lesson delivery and the engagement o

13、f student dialogic process. It was conducted for a group of ten secondary three express students (equivalent to grade 8). The students, four girls and six boys, were selected by their Chemistry teacher to attend a r

14、emedial lesson on the topic of “Separation Techniques”.They came from two different classes taught by the same teacher.The separation technique to be revis</p><p>  Table 1: Lesson Proceedings</p><

15、;p>  After the formal greetings and a simple self-introduction, the remedial teacher proceeded to explain the importance of separation techniques in chemistry. He cited simple distillation as an important technique th

16、at allows us to obtain a pure solvent or liquid from a contaminated liquid sample (a solution or a suspension).A fully labelled diagram of the apparatus set up for simple distillation was projected on the screen with the

17、 help of a visualiser (Figure 1).Referring to the diagram on the scr</p><p>  Figure 1.Diagram of a simple distillation set up for distilling seawater.</p><p>  At this juncture, students were i

18、nvited to verbally ask any question about the apparatus set up.There was a short pause with no response from the students.The remedial teacher then requested that they pen their questions on blank pieces of paper.Again,

19、there were some “thoughtful” actions (for examples, a boy had his chin propped by his hand on the table and a few girls showed contorted eyebrows, all presumably deep in their thoughts).Most of them stared blankly at the

20、 diagram projected on the s</p><p>  The remedial teacher then wrote the following words on the whiteboard – “What if…” and instructed students to begin posing their questions with these two words.He also ad

21、ded that they could ask anything about the apparatus set up, including the materials, products, reaction conditions or anything that interest them, so long as it was something related to the simple distillation process o

22、r apparatus set up. They could ask questions that they know the answers, or questions that they do not know th</p><p>  It was observed that students began to pen their thoughts, writing down the questions a

23、nd raising their heads periodically to refer to the diagram shown on the screen.It took about ten minutes before most of them became exhausted of ideas and a few started to curiously peek into their neighbours’ work.The

24、remedial teacher then collected the papers and began to flash them one by one on the visualiser.For each student’s questions presented, the remedial teacher facilitated an almost spontaneous re</p><p>  Figu

25、re 2.“What if..” questions can surface unfamiliar experimental situations</p><p>  The “what if” questions and peer responses</p><p>  The activity generated a list of 26 questions from the ten

26、students (Table 2).These questions can be broadly classified into 11 different types of “What if…” questions pertaining to the topic on simple distillation of seawater. </p><p>  Table 2: Breakdown and frequ

27、ency of the types of “What if…” questions posed by students.</p><p>  (For the actual questions posed by students, please see Annex A)</p><p>  Unfortunately, the lively discussion during the pr

28、esentation of the students’ “What if..” questions was not documented on paper on the spot or recorded in any media form.However, some typical examples of peer responses to the posed questions are summarized in Table 3.A

29、few of the peer responses may not be technically sound and some may be incorrect.It is important to have these misconceptions addressed immediately, and on the spot, by the teacher.This was done each time the teacher ide

30、ntified a </p><p>  Table 3: Typical peer responses (verbal) to “What if…” questions posed by students </p><p>  Discussion</p><p>  The teacher-talk section lasted about ten minute

31、s.Students took about another ten minutes to think about how to pose and write down the questions.This involved closely studying the diagram on the projector screen, generating possibilities on how the questions may be w

32、ritten, and making sense of the questions and possible responses if they know the answers.This was what one student did – she provided answers to her own questions.(See Annex A, last example)</p><p>  The ne

33、xt twenty minutes were spent on facilitating peer responses to the questions.It is interesting to note that the students came from two classes and may not have known each other well.Although this is may be an assumption,

34、 what is amazing was that they were able to warm up to a total stranger, the remedial teacher, in just a couple of minutes.They were chatty and fully engrossed in contributing to possible answers to their peers’ question

35、s.There was laughter, an occasional argument and of co</p><p>  The entire classroom learning experience threw up several interesting and noteworthy teaching-learning issues for science teachers.</p>

36、<p>  (1) Modeling real life learning experiences.</p><p>  Reflective learning strategies, like the use of “what if” questions, can be effectively applied to classroom situations.These learning experie

37、nces are, in effect, models of real life problem-solving and learning experiences (Associated Press, 2007; CNN, 2003; Straits Times, 2003). By posing “what if” questions on the distillation set up, students not only get

38、to see the “problem” from different angles, they also have to generate different possibilities and interpret the situation in different wa</p><p>  (2) Engagement of dialogic activity. </p><p> 

39、 Students were actively engaged in generating possibilities, defending their ideas, and developing deeper insights through social interactions with peers. There were a lot of opportunities for student-student and teacher

40、-student communication. Plain knowledge dissemination and routine assessment tasks following a traditional lecture-demonstration lesson would at best result in students being able to understand the basic technical concep

41、ts and to apply the knowledge within a very limited scope (th</p><p>  (3) New knowledge and learning opportunities.</p><p>  From the students’ “what if” questions and the corresponding respons

42、es from the floor, including those from the teacher, new knowledge and challenges arose.Many of these were surfaced from the discussions and some could even be extended into mini projects or investigative activities in t

43、he laboratory.Although several learning situations arising from students’ questions and responses (Tables 2 and 3) are not within the curricular requirements, new learning experiences gained from this lesson coul</p&g

44、t;<p>  The experience may be refreshing but several concerns have also been identified.</p><p>  (1) Readiness of the teacher.</p><p>  In facilitating the discussion, the teacher has to

45、 be knowledgeable on the topic and open to unfamiliar learning situations.She or he has to be ready to accept students’ responses with some degree of plausibility and make connections between the students’ questions and

46、responses with the technical details involved in the topic. In the school context, it may be necessary to link the students’ responses and ideas to what they are expected to learn from the prescribed curriculum (that is,

47、 from the </p><p>  (2) Time constraints and proper closure for the lesson.</p><p>  It is important to have a proper closure for the lesson. This means a good control over the time spent in the

48、 various stages of the lesson (from teacher talk to posing of question, peer responses and finally the summary).The teacher will need to tie up loose ends before summarizing the students’ contributions and presenting the

49、 entire concept to them.If necessary, a separate lesson should be conducted to evaluate the students’ understanding and abilities to apply newly acquired knowledge and ski</p><p>  (3) Follow-up learning opp

50、ortunities.</p><p>  With the teacher’s experience, it would be possible to identify follow-up learning opportunities from this lesson.Some activities may be experimental, like letting students investigate b

51、y comparing the effectiveness of using a Bunsen burner and candles in a distillation set up.Other activities may involve evaluation of students’ ability to analyse information. For example, students may be asked to comme

52、nt on the effectiveness of the distillation process based on two sets of temperature data of w</p><p>  Although there is yet any research evidence to support the effectiveness of using ‘what if’ questions i

53、n a science lesson, observations from this lesson seem to suggest that students will show a high degree of motivation during and after such a lesson.They were actively on task, generating the questions, and discussing th

54、e responses during the peer response stage. At the end of the lesson, the students commented that the lesson was interesting.The teacher agreed but confessed that he had only pr</p><p>  Recommendations and

55、Conclusion</p><p>  The curricular statements that are used to assess students in some high-stake public examinations have all along dictated the teaching of science and other school subjects. However, uniqu

56、e to science are the elements of teaching through experiments and the high degree of creativity needed to solve problems.While it may be necessary to retain the lecture-demonstration style of lesson delivery, especially

57、where basic experimental science topics are concern, teachers can try identifying opportuniti</p><p><b>  譯 文</b></p><p>  題目:用“如果…又怎樣”的問題去用于教科學(xué)</p><p><b>  摘要:<

58、;/b></p><p>  隨著學(xué)生基礎(chǔ)知識的擴大,他們的學(xué)習(xí)習(xí)慣需要更靈活。傳統(tǒng)上,學(xué)校的科學(xué)教學(xué)往往以教師為中心的方法,如講座,實驗示范或引導(dǎo)式探究。這種純知識的傳播,沒有充分準(zhǔn)備的學(xué)生不能適應(yīng)不斷變化的世界。因此,學(xué)校要培養(yǎng)學(xué)生反映他們的學(xué)習(xí)習(xí)慣 - 那就是,讓學(xué)生觀察,生成相關(guān)的替代品,這些想法是有道理的。本文討論了有史料記載的反射學(xué)習(xí)策略 - 使用“如果”的問題,幫助學(xué)生擴展他們的學(xué)習(xí)課程要求之

59、外。學(xué)生們介紹了一個蒸餾裝置,然后提出“如果”的問題。他們的問題和相應(yīng)的對等回應(yīng)了豐富的資料給教師,教師探討如何科學(xué)的不同教學(xué),對學(xué)生的學(xué)習(xí)經(jīng)驗產(chǎn)生較大影響。</p><p><b>  引言</b></p><p>  本課程包括一系列的學(xué)生的結(jié)果覆蓋實驗室和實驗科學(xué)的學(xué)習(xí)(教育部,2007)。研究人員和學(xué)者都認(rèn)為,實驗和學(xué)校實際工作的角色應(yīng)該讓學(xué)生實踐的實驗室技能

60、,學(xué)習(xí)各種調(diào)查過程中獲得第一手的經(jīng)驗,在處理材料和實驗室器皿(鍵,鄧恩和Hegarty榛,蘭等人,1986;2002;1986;josephsen赫加蒂榛,,2003 Woolnough,1990)。除了這些認(rèn)知和精神運動目標(biāo)學(xué)校實驗室課程,也有教訓(xùn),建議,應(yīng)通過更高要求的課程和新的教學(xué)方法,能激發(fā)學(xué)生學(xué)習(xí)更具吸引力(施密特,2000)。本文討論了一種良好的反思性學(xué)習(xí)策略對學(xué)生幫助他們擴展他們的學(xué)習(xí)課程要求之外的問題使用(下巴和嘉,20

61、04;沃爾什和sattes,2005)。特別是,它討論了使用“如果”的學(xué)生提出的問題(Fogarty,1994)。學(xué)生們介紹了蒸餾設(shè)置然后問提出“如果”的問題。他們的問題和相應(yīng)的對等反應(yīng)為教師提供一個良好的洞察力對學(xué)生如何有助于知識的構(gòu)建通過自我創(chuàng)造學(xué)習(xí)的機會。整個經(jīng)歷也可能有助于創(chuàng)造一個課堂教學(xué)中學(xué)習(xí)文化,教師需要在新手學(xué)習(xí)者高級學(xué)習(xí)者的角色。</p><p><b>  課程的進(jìn)行</b>

62、;</p><p>  傳統(tǒng)上對科學(xué)實驗課開始教師先講,學(xué)生評價,那么,在實驗室進(jìn)行的驗證性的實驗經(jīng)驗。探究式課可以調(diào)整課程結(jié)構(gòu)有點,通過老師問一個問題,開始學(xué)習(xí)任務(wù),探究式課可以調(diào)整一下課程結(jié)構(gòu)。比如說:</p><p>  “如果你在海上被困在一艘小船上,你會如何去做一些新鮮的飲用水用你周圍的海水?(假設(shè)給你有必要的實驗室器皿。)”</p><p>  教師可以

63、然后通過促進(jìn)課堂討論,最后老師總結(jié)方面探討適合課程要求。</p><p>  Mortimer 和 Scott(2003)在他們的書中,使中學(xué)科學(xué)更有意義,建議學(xué)生應(yīng)該進(jìn)行某種形式的對話活動,如果他們理解制定的科學(xué)主題。在這方面,學(xué)習(xí)和意義建構(gòu)的課堂談話,不會使同床異夢,但是在科學(xué)課堂的基本功能,以確保學(xué)生獲得了一些有影響力的學(xué)習(xí)經(jīng)驗。</p><p>  參與本次討論的基礎(chǔ)上,吸取了教訓(xùn)

64、,無論是傳統(tǒng)的課堂,傳遞和學(xué)生參與對話的過程。它的十所中學(xué)的三個明確的學(xué)生(相當(dāng)于8級)為一組進(jìn)行。他們的化學(xué)老師的學(xué)生,4男6女,他們在參加化學(xué)教師 “分離技術(shù)專題輔導(dǎo)課”。他們來自兩個不同的類由同一個老師教。是在40分鐘的課程修訂的分離技術(shù)是“簡單蒸餾”。本文作者是由他們的老師請教輔導(dǎo)課。作者(簡稱“輔導(dǎo)教師在本文中)也是一個合格的和有經(jīng)驗的中學(xué)科學(xué)教師超過16年。本課的程序總結(jié)在表1。</p><p>&l

65、t;b>  表一:課程程序</b></p><p>  在正式的問候,一個簡單的自我介紹后,輔導(dǎo)教師解釋進(jìn)行化學(xué)分離技術(shù)的重要性。他引用了簡單蒸餾作為一種重要的技術(shù),使我們能夠從受污染的液體樣品獲得純?nèi)軇┗蛞后w(溶液或懸浮液)。一個簡單蒸餾的完全標(biāo)記圖的設(shè)備建立被投射在銀幕上在一個人的幫助下(圖1)。指的是屏幕上的圖,輔導(dǎo)老師接著解釋簡單蒸餾裝置作品。學(xué)生們注意,有的忙著記筆記。本節(jié)課持續(xù)了約十

66、分鐘,完全是由教師說講。</p><p>  圖1:一個簡單的蒸餾建立蒸餾海水圖。</p><p>  在這個時候,學(xué)生被邀請口頭提出任何關(guān)于裝置的問題。有一個短暫的停頓,沒有學(xué)生的反應(yīng)。老師輔導(dǎo),然后要求他們用筆在空白紙片上寫下問題。再次,也有一些“周到”的行動(例如,一個男孩把下巴抵住他們在桌上的手和幾個女孩則表現(xiàn)出扭曲的眉毛,大概是陷入沉思)他們大多茫然地看著投影在屏幕上的圖。同樣,

67、沒有寫任何東西。</p><p>  輔導(dǎo)老師在白板上然后寫下–“如果……”,指導(dǎo)學(xué)生開始提出問題與這兩個字的詞語。他還補充說,他們可以問任何有關(guān)設(shè)備設(shè)置,包括材料,產(chǎn)品,反應(yīng)條件或任何他們感興趣的問題,只要它是簡單的蒸餾過程或裝置設(shè)置相關(guān)的東西。他們可能會問的問題,他們知道的答案,或不知道的問題,他們的答案。沒有例子,這些指令以外的學(xué)生。</p><p>  據(jù)觀察,學(xué)生們開始把他們的想

68、法和問題寫下來,時不時的抬頭看看屏幕上顯示的圖。它花了大約十分鐘時間,他們中的大多數(shù)人想的筋疲力盡和一些開始好奇地偷看同桌的工作。輔導(dǎo)老師那收集的材料開始閃光逐一對實物投影機。為每一個學(xué)生的問題,輔導(dǎo)教師引導(dǎo)的一個幾乎自發(fā)的反應(yīng)從地板。學(xué)生可以觀察到聊幾顯示娛樂在同齡人的問題。這是通過提出問題的可能性是一個活潑的貢獻(xiàn),包括困難和不熟悉的情況下產(chǎn)生這樣的問題:“如果電容器可以嗎?“如果酒精燈燈是由一根蠟燭代替?“(圖2)</p>

69、;<p>  如果沒有冷凝器怎么辦</p><p>  加熱是否可以用一只蠟燭替代</p><p>  如果的問題可以適用于陌生的實驗情景</p><p>  對在這次活動中10個學(xué)生想到的26個不同問題,可以大致歸為11中不同類型的有關(guān)主題海水簡單蒸餾的問題‘’如果….會怎樣’’ </p><p>  表二:學(xué)生提出的各種各樣

70、的關(guān)于如果…會怎樣”的問題和頻率</p><p>  不幸的是,在演示過程中對學(xué)生的熱烈討論“如果......”問題沒有當(dāng)場記錄在紙上或者記錄在任何媒體形式。然而,同行的反應(yīng),提出了問題的一些典型的實例總結(jié)于表3。少數(shù)的同行反應(yīng)可能不是技術(shù)上的聲音,有些人可能是不正確的。重要的是有這些誤解,立即處理,并當(dāng)場,由老師。這樣做是每次在討論過程中,老師發(fā)現(xiàn)了誤解。表3還給出了一些例子學(xué)生的誤解,確定從他們提出了一些問題

71、和同行的響應(yīng)。</p><p>  表3:典型的同學(xué)們反應(yīng)(口頭)“如果......”由學(xué)生提出的問題</p><p><b>  討論</b></p><p>  教師談話歷時約十分鐘。學(xué)生花了大約10分鐘,想想如何構(gòu)成并寫下問題。這與投影屏幕上的研究圖有密切關(guān)系,對問題的可寫,和制造中的問題和可能的反應(yīng)感覺如果他們知道答案。這是一個學(xué)生做–

72、她提供了她自己的問題的答案。(見附件一,最后一個例子)</p><p>  接下來的二十分鐘用來得到其他人的回答。當(dāng)注意到學(xué)生們是來自兩個班級并且可能相互之間并不了解會讓你覺得更有趣。盡管這可能只是一個假想,但更令人吃驚的是他們可以在短短幾分鐘內(nèi)與一個陌生人以及代課的老師變得熟悉。他們非常健談并且在思索對方所給問題的答案時也是全神貫注的。他們可能大笑,時而爭論幾句,當(dāng)然也會發(fā)出興奮地評語諸如“啊,我們不知道那個!

73、”或者“哦,現(xiàn)在我明白了!”(比如說,老師總結(jié)說,從理論上講用蠟燭代替蒸餾機也可以在蒸餾過程中收集到純凈水,但實際中那將是一個更慢而且低效率的過程。這時就會發(fā)出上面提到的反應(yīng)。他們也對于溫度計并不是裝配過程中的必要裝備而感到驚訝。)這一整個的教室學(xué)習(xí)經(jīng)歷會引發(fā)出一些教科學(xué)的老師們值得注意的教—學(xué)問題。</p><p> ?。?)在實際生活中形成模式的學(xué)習(xí)經(jīng)驗。 </p><p>  反應(yīng)

74、性的學(xué)習(xí)方法,比如“如果”問題的應(yīng)用,可以在學(xué)校學(xué)習(xí)中有效地運用。這些學(xué)習(xí)經(jīng)驗實際上就是在生活中解決問題的固定模式以及學(xué)習(xí)的經(jīng)歷。(Associated Press, 2007; CNN, 2003; Straits Times, 2003)。就裝配蒸餾機提出類似“如果”問題,同學(xué)們不僅可以學(xué)會從不同角度看問題,而且不得不想到各種可能性以及用不同的方式來解釋統(tǒng)一情況。(Associated Press, 2007; CNN, 2003;

75、 Straits Times, 2003)。</p><p><b>  (2)參與對話</b></p><p>  學(xué)生們非常積極的參與設(shè)想可能,辯護(hù)自己的想法,并且在與他人交流過程中形成更為深刻的見解。這個課堂提供了許多學(xué)生之間以及師生之間的交流機會。簡單的知識傳授和傳統(tǒng)演講式課堂后日常的作業(yè)很容易導(dǎo)致學(xué)生只理解基本的技術(shù)性概念以及在很狹隘的范圍內(nèi)應(yīng)用這些知識。(

76、即課程的要求范圍內(nèi))</p><p> ?。?)新知識和學(xué)習(xí)的機會。</p><p>  從同學(xué)們的“如果”問題以及其他人包括老師在內(nèi)的回答中,會激發(fā)出新的知識和挑戰(zhàn)。有些是淺顯易懂的,有些則要延伸為小的研究項目,有些甚至可以擴展為實驗室實驗項目。盡管有些學(xué)習(xí)中的狀況是由同學(xué)們的問題以及回答引發(fā)而并非課堂內(nèi)要求,但是,從這堂課中獲得的學(xué)習(xí)心得可以幫助同學(xué)們在以后其他的學(xué)習(xí)中應(yīng)用這種觀察和分

77、析的能力。</p><p>  這種學(xué)習(xí)方法也許新穎,但是我們也發(fā)現(xiàn)了其中的一些問題。</p><p>  (1) 老師充足的準(zhǔn)備</p><p>  要促進(jìn)學(xué)生們討論,老師必須就討論的主題而言是博學(xué)的,而且要對應(yīng)于陌生的學(xué)習(xí)情境具有開放性思維。他(她)必須接受學(xué)生們在一定程度上似乎合理的回答,并將他們的回答和討論的主題相關(guān)的技術(shù)性細(xì)節(jié)聯(lián)系起來。在學(xué)校里,有必要將學(xué)

78、生們的回答和他們想要從學(xué)校規(guī)定課程(即教學(xué)大綱和教材)里想要學(xué)到的東西聯(lián)系起來。盡管不是每位老師都有能力應(yīng)對這種不可預(yù)料的學(xué)——教情況,但是這種新的學(xué)習(xí)經(jīng)歷會使得老師們成為學(xué)生的學(xué)習(xí)伙伴,雖然相對來說年齡大了一點。</p><p>  (2)時間限制和適當(dāng)?shù)姆忾]的教訓(xùn)。</p><p>  課堂中適當(dāng)?shù)闹袛鄷r很有必要的。這代表很好地控制課堂不同階段的時間(從老師的講授到問題的提出再到同學(xué)的

79、回答以及最后的總結(jié))。老師需要在總結(jié)同學(xué)們發(fā)言以及向他們展示完整概念之前就做好收尾工作。如果有必要的話,應(yīng)該設(shè)立一個獨立的課程來測試同學(xué)們的理解力和應(yīng)用新知識新技能的能力。但問題是,理療課程授課對象僅是10個學(xué)生,時長40分鐘。上一堂時長60到70分鐘的擁有40個學(xué)生容量課都不是一件易事,尤其是教授一些抽象的科學(xué)概念與主題。時間的控制則有可能妨礙促進(jìn)學(xué)生們的有效討論。</p><p> ?。?)把握學(xué)習(xí)機會 &l

80、t;/p><p>  根據(jù)教師的經(jīng)驗,他們可以判斷學(xué)生是否跟把握了這堂課中的學(xué)習(xí)機會。有些活動有實驗性質(zhì),比如讓學(xué)生們比較燃燒器和蒸餾裝置中的蠟燭。有些活動涉及到評估學(xué)生們分析信息的能力。比如,要求學(xué)生們總結(jié)兩個裝置用的從冷凝器中得到的不同溫度的水對蒸餾過程的影響——一個用的是冷凝器頂部的水另一個用的是底部的水。</p><p>  盡管還沒有證據(jù)證明在科學(xué)課堂中應(yīng)用“如果”問題的有效性,但對

81、從這個課程觀察可以發(fā)現(xiàn)學(xué)生們在課堂上或者課后都表現(xiàn)出很高的積極性。他們積極完成任務(wù),包括提出問題還有在同伴給出回答時針對回答進(jìn)行討論。在課堂結(jié)束的時候?qū)W生們評價到這節(jié)課很有意思。老師同意但也承認(rèn)只準(zhǔn)備了一個圖標(biāo)來上這堂課,但是教學(xué)材料的其他部分(問題及回答)都是由此引出的。同學(xué)們異口同聲的表示贊同?!澳鞘菫槭裁茨?!”他們的熱情進(jìn)而可以支持應(yīng)用學(xué)生的問題這一研究的論斷,即學(xué)生的學(xué)習(xí)動力是由他們自己的問題所驅(qū)動的,尤其是當(dāng)他們提出并回答正確

82、的問題時。(Chin and Chia, 2004).</p><p><b>  建議和結(jié)論</b></p><p>  這是用于評估在一些高風(fēng)險的公共考試的學(xué)生一直取決于科學(xué)和其他學(xué)科教學(xué)的課程報告。然而,獨特的科學(xué)是通過實驗和急需解決的問題的高度教學(xué)創(chuàng)新的元素。雖然它可能有必要保留的教訓(xùn)交付示范講座的風(fēng)格,特別是在基本實驗科學(xué)的主題是關(guān)注,教師可以嘗試尋找機會,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論