數(shù)字圖像處理外文翻譯_第1頁(yè)
已閱讀1頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  數(shù)字圖像處理</b></p><p>  Digital Image Processing</p><p><b>  作者:李白萍</b></p><p>  起止頁(yè)碼:42頁(yè)-46頁(yè),127頁(yè)-132頁(yè)</p><p>  出版日期(期刊號(hào)):2008.4( 200

2、9.10重印)</p><p>  出版單位:西安電子科技大學(xué)出版社</p><p><b>  數(shù)字圖像處理</b></p><p><b>  1 引言</b></p><p>  許多研究者已提議提出了在數(shù)字圖像里的連接組件是由一個(gè)減少的數(shù)據(jù)量或簡(jiǎn)化的形狀。一般我們不得不陳訴在實(shí)際應(yīng)用中的運(yùn)算

3、法則的發(fā)展,選擇和更改,它是依賴于鄰域和任務(wù)的,除此之外沒有更好的辦法了。不過(guò),有趣的是,請(qǐng)注意, 有幾個(gè)等價(jià)之間出版的方法和觀念,和表征這種等價(jià)應(yīng)該是有用的分類的廣泛和多樣性,討論等價(jià)是這份報(bào)告一個(gè)主要的意圖,。 1.1分類方法 一類形狀減少算子是基于距離變換的。一個(gè)距離骨架是一個(gè)子集點(diǎn),某一特定的組成部分,例如,每點(diǎn)子,這代表了該中心的一個(gè)最大光盤(標(biāo)記半徑這片光碟)載于特定的組成部分。作為一個(gè)例子,在這類算子,本報(bào)告討論了

4、一個(gè)計(jì)算方法距離骨架使用的D4距離函數(shù),這是適當(dāng)?shù)臄?shù)字化圖片。 第二類算子產(chǎn)生的中位數(shù)或中心線數(shù)字對(duì)象在一個(gè)非迭代的方式。通常這樣的算子找到臨界點(diǎn),并計(jì)算出特殊路徑通過(guò)對(duì)象連接這些點(diǎn)。 第三類是算子的特點(diǎn)是迭代細(xì)化。從歷史上看, 用已經(jīng)在1862年任期線性骨架為結(jié)果連續(xù)變形的前一個(gè)連接子一歐氏空間沒有改變的連通原來(lái)的設(shè)置,直到只有一套線和點(diǎn)仍然存在。許多算法在圖像分析是在此基礎(chǔ)上的一般概念的細(xì)化。目標(biāo)是計(jì)算特性的數(shù)字對(duì)象

5、,其中</p><p><b>  1.2基礎(chǔ)</b></p><p>  所用符號(hào)如下[ 17 ] 。數(shù)字圖像I是一個(gè)功能離散集C ,即所謂的載體的形象。要素的C 是網(wǎng)格點(diǎn)或網(wǎng)格細(xì)胞和分子性( P ;I( p )) 一個(gè)圖像像素( 2維)或體素(三維案件)。范圍的形象是f0 ; gmaxg 與gmax _ 1 。范圍二進(jìn)制的形象是f0 ,我們只使用在此報(bào)告的二進(jìn)制圖

6、像。讓它成為一套所有像素的位置與價(jià)值1 。 形象載體是對(duì)一正交網(wǎng)格在二維或三維空間。 有兩種選擇:使用網(wǎng)格細(xì)胞模型的二維像素位置, P是一個(gè)封閉的廣場(chǎng)( 2細(xì)胞)在歐氏平面和三維像素的位置是封閉立方體( 3細(xì)胞) ,在歐氏空間,那里邊的長(zhǎng)度為1和平行于坐標(biāo)軸,中心有整數(shù)坐標(biāo)。作為一個(gè)第二個(gè)選項(xiàng),使用網(wǎng)格點(diǎn)模型一二維或三維像素的位置是一個(gè)網(wǎng)格點(diǎn)。 兩個(gè)像素的位置P和Q在網(wǎng)格中的細(xì)胞模型是所謂的0 -毗鄰i_ p 6 = Q和他們分享至少有

7、一個(gè)頂點(diǎn)(這是一個(gè)零細(xì)胞) 。 兩個(gè)三維像素的位置P和Q在網(wǎng)格中的細(xì)胞模型是所謂的毗鄰i_ p 6 = Q和他們分享至少有一個(gè)優(yōu)勢(shì)(這是一細(xì)胞) 。注意:如果格點(diǎn)模型是用這鄰接在二維或鄰接在三維。最后,兩個(gè)像素的三維位置P和Q在網(wǎng)格中的細(xì)胞模型被稱為2 -毗鄰i_ </p><p>  如果P值q之間的距離是趨向于為零,則D4 (p; q )的距離為所有性能的一個(gè)指標(biāo)。由于二進(jìn)制數(shù)字形象。我們這個(gè)圖像變換到一個(gè)新

8、的代表在每屆點(diǎn)P 2 hii D4類-距離像素具有的價(jià)值為零。轉(zhuǎn)型包括兩個(gè)步驟。我們申請(qǐng)的職能,以F1的形象,我在標(biāo)準(zhǔn)掃描秩序,產(chǎn)生i_ (i; j )的F1 = (i; j ;i(i; j )) ,和F2在反向標(biāo)準(zhǔn)掃描秩序,產(chǎn)生(i; j )= F2的(i; j ; i_ (i; j )) ,詳情如下: F1的(i; j ;i(i; j )) = 8 > < > > :if I(i; j )= 0 ,minfi

9、_ (i􀀀 1 ; j )+ 1 ; i_ (i; j 􀀀 1 ) + 1,if I(i; j )= 1 ,i6 = 1或j 6 = 1 M+n 否則,F2的(i; j ; i_ (i; j )) = minf_i_ (i; j );(i+ 1 ; j )+ 1 ;(i; j + 1 ) + 1 由此產(chǎn)生的圖像,是距離變換的形象,一,注意T是一個(gè)集F至[ ( i ; j );T(i; j )]

10、 : 1 _ i _ n ^1_ j _,讓t_</p><p>  詳情如下: g1(i; j; T_(i; j)) = maxfT_(i; j); T__(i 􀀀 1; j)􀀀 1; T__(i; j 􀀀 1) 1g</p><p>  g2(i; j; T__(i; j)) = maxfT__(i; j); T___(i + 1

11、; j)􀀀 1; T___(i; j + 1) ?? 1結(jié)果t___是平等的向距離變換的圖像,兩種職能G1和G2 ,與G( t_ ) = g2(g1(T_)) = T___,我們有[ 15 ] : 定理1G( t_ ) =T,如果t0是任何子的形象T(延長(zhǎng)至一個(gè)形象有值為0 ,在所有剩余的持倉(cāng)量)等認(rèn)為,G( t0 ) =T, 然后t0 (i; j )= t_ (i; j )在各個(gè)崗位上的t_與非零值。 非正式的,定

12、理指出,距離變換的圖像是可重構(gòu)從距離骨骼,它是迄今發(fā)現(xiàn)的最小的數(shù)據(jù)集需要這樣的重建工作。用過(guò)的距離, D4從歐幾里德度量。舉例來(lái)說(shuō),這個(gè)D4的遠(yuǎn)程骨架,是不是不變根據(jù)輪換。為一近似歐氏距離,一些作者建議使用 的權(quán)數(shù),格點(diǎn)街道[ 4 ] 。 [ 11 ]介紹了準(zhǔn)歐氏距離。 在一般, D4的遠(yuǎn)程骨架是一個(gè)子像素(p;T( p )項(xiàng))的轉(zhuǎn)變形象,這是不一定的連接。 </p><p>  2.2 臨界點(diǎn)算法 最

13、簡(jiǎn)單的一類,這些算法決定的中點(diǎn)子連接組件在標(biāo)準(zhǔn)掃描,以便每一行。讓升被1指數(shù)為若干組件連接在一列原形象。我們的下列職能為1 _ i _ n : ei(l) = _ j if this is the lth case I(i; j) = 1 ^ I(i; j 􀀀 1) = 0</p><p>  in row i, counting from the left, with I(i;⣵

14、76;1) = 0</p><p>  oi(l) = _ j if this is the lth case I(i; j) = 1 ^ I(i; j+ 1) = 0</p><p>  in row i, counting from the left, with I(i;m+ 1) = 0</p><p>  mi(l) = int((oi(l) ⣵

15、76; ei(l)=2)+ oi(l)</p><p>  所連接的元件在連續(xù)中點(diǎn)所有行構(gòu)成了一個(gè)臨界點(diǎn)骨架的形象,這種方法的計(jì)算是精確的。 結(jié)果子像素的原始物體,而這些子像素不一定是連接的。他們可以形成噪音分枝,當(dāng)對(duì)象組件接近平行的形象行,他們可能的特殊應(yīng)用是有用的,而掃描方向大約是垂直方向的主要對(duì)象組。</p><p><b>  3 圖像邊緣</b>

16、</p><p>  3.1 圖像邊緣檢測(cè)概論</p><p>  圖像邊緣是圖像最基本的特征之一, 往往攜帶著一幅圖像的大部分信息. 而邊緣存在于圖像的 不規(guī)則結(jié)構(gòu)和不平穩(wěn)現(xiàn)象中,也即存在于信號(hào)的突變點(diǎn)處,這些點(diǎn)給出了圖像輪廓的位置,這些輪 廓常常是我們?cè)趫D像處理時(shí)所需要的非常重要的一些特征條件, 這就需要我們對(duì)一幅圖像檢測(cè)并提 取出它的邊緣. 而邊緣檢測(cè)算法則是圖像處理問(wèn)題中經(jīng)典技術(shù)難

17、題之一, 它的解決對(duì)于我們進(jìn)行高 層次的特征描述, 識(shí)別和理解等有著重大的影響; 又由于邊緣檢測(cè)在許多方面都有著非常重要的使 用價(jià)值, 所以人們一直在致力于研究和解決如何構(gòu)造出具有良好性質(zhì)及好的效果的邊緣檢測(cè)算子的 問(wèn)題.在通常情況下,我們可以將信號(hào)中 的奇異點(diǎn)和突變點(diǎn)認(rèn)為是圖像中的邊緣點(diǎn),其附近灰度的 變化情況可從它相鄰像素灰度分布的梯度來(lái)反映.根據(jù)這一特點(diǎn),我們提出了多種邊緣檢測(cè)算子:如 Robert 算子,Sobel 算子,Pre

18、witt 算子, Laplace 算子等.這些方法多是以待處理像素為中心的鄰域作為進(jìn)行灰度分析的基礎(chǔ),實(shí)現(xiàn)對(duì)圖像 邊緣的提取并已經(jīng)取得了較好的處理效果. 但這類方法同時(shí)也存在有邊緣像素寬, 噪聲干擾較嚴(yán)重 等缺點(diǎn),即使采用一些輔助的方法</p><p>  3.2 圖像邊緣的定義</p><p>  圖像的大部分主要信息都存在于圖像的邊緣中, 主要表現(xiàn)為圖像局部特征的不連續(xù)性, 是圖像 中

19、灰度變化比較劇烈的地方, 也即我們通常所說(shuō)的信號(hào)發(fā)生奇異變化的地方. 奇異信號(hào)沿邊緣走向 的灰度變化劇烈,通常我們將邊緣劃分為階躍狀和屋頂狀兩種類型(如圖 1-1 所示).階躍邊緣中 兩邊的灰度值有明顯的變化; 而屋頂狀邊緣位于灰度增加與減少的交界處. 在數(shù)學(xué)上可利用灰度的 導(dǎo)數(shù)來(lái)刻畫邊緣點(diǎn)的變化,對(duì)階躍邊緣,屋頂狀邊緣分別求其一階,二階導(dǎo)數(shù). 對(duì)一個(gè)邊緣來(lái)說(shuō),有可能同時(shí)具有階躍和線條邊緣特性.例如在一個(gè)表面上,由一個(gè)平面變化 到法線方

20、向不同的另一個(gè)平面就會(huì)產(chǎn)生階躍邊緣; 如果這一表面具有鏡面反射特性且兩平面形成的 棱角比較圓滑,則當(dāng)棱角圓滑表面的法線經(jīng)過(guò)鏡面反射角時(shí),由于鏡面反射分量,在棱角圓滑表面 上會(huì)產(chǎn)生明亮光條, 這樣的邊緣看起來(lái)象在階躍邊緣上疊加了一個(gè)線條邊緣. 由于邊緣可能與場(chǎng)景中物體的重要特征對(duì)應(yīng),所以它是很重要的圖像特征.比如,一個(gè)物體的輪廓通常產(chǎn)生階躍邊緣, 因?yàn)槲矬w的圖像強(qiáng)度不同于背景的圖像強(qiáng)度.</p><p>  3.3

21、 論文選題的理論意義</p><p>  論文選題來(lái)源于在圖像工程中 占有重要的地位和作用的實(shí)際應(yīng)用課題.所謂圖像工程學(xué)科是 指將數(shù)學(xué),光學(xué)等基礎(chǔ)學(xué)科的原理,結(jié)合在圖像應(yīng)用中積累的技術(shù)經(jīng)驗(yàn)而發(fā)展起來(lái)的學(xué)科.圖像工 程的內(nèi)容非常豐富,根據(jù)抽象程度和研究方法等的不同分為三個(gè)層次:圖像處理,圖像分析和圖像 理解.如圖 1-2 所示,在圖中,圖像分割處于圖像分析與圖像處理之間,其含義是,圖像分割是 從圖像處理進(jìn)到圖像分析

22、的關(guān)鍵步驟,也是進(jìn)一步理解圖像的基礎(chǔ).</p><p>  圖像分割對(duì)特征有重要影響. 圖像分割及基于分割的目標(biāo)表達(dá), 特征提取和參數(shù)測(cè)量等將原始 圖像轉(zhuǎn)化為更抽象更緊湊的形式, 使得更高層的圖像分析和理解成為可能. 而邊緣檢測(cè)是圖像分割 的核心內(nèi)容, 所以邊緣檢測(cè)在圖像工程中占有重要的地位和作用. 因此邊緣檢測(cè)的研究一直是圖像 技術(shù)研究中熱點(diǎn)和焦點(diǎn),而且人們對(duì)其的關(guān)注和投入不斷提高.</p>&l

23、t;p>  Digital Image Processing</p><p>  1 Introduction</p><p>  Many operators have been proposed for presenting a connected component n a digital image by a reduced amount of data or simplie

24、d shape. In general we have to state that the development, choice and modi_cation of such algorithms in practical applications are domain and task dependent, and there is no \best method". However, it is interesting

25、 to note that there are several equivalences between published methods and notions, and characterizing such equivalences or di_erences should be useful to cat</p><p>  1.1 Categories of Methods</p>&l

26、t;p>  One class of shape reduction operators is based on distance transforms. A distance skeleton is a subset of points of a given component such that every point of this subset represents the center of a maximal disc

27、 (labeled with the radius of this disc) contained in the given component. As an example in this _rst class of operators, this report discusses one method for calculating a distance skeleton using the d4 distance function

28、 which is appropriate to digitized pictures. A second class of operat</p><p>  The third class of operators is characterized by iterative thinning. Historically, Listing [10] used already in 1862 the term li

29、near skeleton for the result of a continuous deformation of the frontier of a connected subset of a Euclidean space without changing the connectivity of the original set, until only a set of lines and points remains. Man

30、y algorithms in image analysis are based on this general concept of thinning. The goal is a calculation of characteristic properties of digital objects </p><p>  in a unique interpretation besides that it al

31、ways denotes a connectivity preserving reduction operation applied to digital images, involving iterations of transformations of speci_ed contour points into background points. A subset Q _ I of object points is reduced

32、by a de_ned set D in one iteration, and the result Q0 = Q n D becomes Q for the next iteration. Topology-preserving skeletonization is a special case of thinning resulting in a connected set of digital arcs or curves. A

33、digital curve i</p><p>  1.2 Basics</p><p>  The used notation follows [17]. A digital image I is a function de_ned on a discrete set C , which is called the carrier of the image. The elements o

34、f C are grid points or grid cells, and the elements (p; I(p)) of an image are pixels (2D case) or voxels (3D case). The range of a (scalar) image is f0; :::Gmaxg with Gmax _ 1. The range of a binary image is f0; 1g. We o

35、nly use binary images I in this report. Let hIi be the set of all pixel locations with value 1, i.e. hIi = I􀀀1(1). The image carri</p><p>  Two pixel locations p and q in the grid cell model are cal

36、led 0-adjacent i_ p 6= q and they share at least one vertex (which is a 0-cell). Note that this speci_es 8-adjacency in 2D or 26-adjacency in 3D if the grid point model is used. Two pixel locations p and q in the grid ce

37、ll model are called 1- adjacent i_ p 6= q and they share at least one edge (which is a 1-cell). Note that this speci_es 4-adjacency in 2D or 18-adjacency in 3D if the grid point model is used. Finally, two 3D pixel locat

38、io</p><p>  2 Non-iterative Algorithms</p><p>  Non-iterative algorithms deliver subsets of components in specied scan orders without testing connectivity preservation in a number of iterations.

39、 In this section we only use the grid point model.</p><p>  2.1 Distance Skeleton" Algorithms</p><p>  Blum [3] suggested a skeleton representation by a set of symmetric points.In a closed

40、subset of the Euclidean plane a point p is called symmetric i_ at least 2 points exist on the boundary with equal distances to p. For every symmetric point, the associated maximal disc is the largest disc in this set. Th

41、e set of symmetric points, each labeled with the radius of the associated maximal disc, constitutes the skeleton of the set. This idea of presenting a component of a digital image as a \distance</p><p>  f1(

42、i; j; I(i; j)) =</p><p><b>  8><>>:</b></p><p>  0 if I(i; j) = 0</p><p>  minfI_(i 􀀀 1; j)+ 1; I_(i; j 􀀀 1) + 1g</p><p>  if

43、I(i; j) = 1 and i 6= 1 or j 6= 1</p><p>  m+ n otherwise</p><p>  f2(i; j; I_(i; j)) = minfI_(i; j); T(i+ 1; j)+ 1; T(i; j + 1) + 1g</p><p>  The resulting image T is the distance t

44、ransform image of I. Note that T is a set f[(i; j); T(i; j)] : 1 _ i _ n ^ 1 _ j _ mg, and let T_ _ T such that [(i; j); T(i; j)] 2 T_ i_ none of the four points in A4((i; j)) has a value in T equal to T(i; j)+1. For all

45、 remaining points (i; j) let T_(i; j) = 0. This image T_ is called distance skeleton. Now we apply functions g1 to the distance skeleton T_ in standard scan order, producing T__(i; j) = g1(i; j; T_(i; j)), and g2 to the

46、result of g1 in rever</p><p>  g1(i; j; T_(i; j)) = maxfT_(i; j); T__(i 􀀀 1; j)􀀀 1; T__(i; j 􀀀 1) 􀀀 1g</p><p>  g2(i; j; T__(i; j)) = maxfT__(i; j); T___(i +

47、1; j)􀀀 1; T___(i; j + 1) 􀀀 1g</p><p>  The result T___ is equal to the distance transform image T. Both functions g1 and g2 de_ne an operator G, with G(T_) = g2(g1(T_)) = T___, and we have

48、[15]: Theorem 1 G(T_) = T, and if T0 is any subset of image T (extended to an image by having value 0 in all remaining positions) such that G(T0) = T, then T0(i; j) = T_(i; j) at all positions of T_ with non-zero values.

49、 Informally, the theorem says that the distance transform image is reconstructible from the distance skeleton, and it is the small</p><p>  2.2 Critical Points" Algorithms</p><p>  The simp

50、lest category of these algorithms determines the midpoints of subsets of connected components in standard scan order for each row. Let l be an index for the number of connected components in one row of the original image

51、. We de_ne the following functions for 1 _ i _ n: ei(l) = _ j if this is the lth case I(i; j) = 1 ^ I(i; j 􀀀 1) = 0 in row i, counting from the left, with I(i;􀀀1) = 0 ,oi(l) = _ j if this is the lth cas

52、e I(i; j) = 1 ^ I(i; j+ 1) = 0 ,in row i, counting from the left, wi</p><p>  3 The image edge</p><p>  3.1 image edge examination introduction</p><p>  The image edge is one of im

53、age most basic characteristics, often is carrying image majority of informations.But the edge exists in the image irregular structure and in not the steady phenomenon, also namely exists in the signal point of discontinu

54、ity place, these spots have given the image outline position, these outlines are frequently we when the imagery processing needs the extremely important some representative condition, this needs us to examine and to with

55、draw its edge to an image. But th</p><p>  3.2 image edge definition</p><p>  The image majority main information all exists in the image edge, the main performance for the image partial charact

56、eristic discontinuity, is in the image the gradation change quite fierce place, also is the signal which we usually said has the strange change place. The strange signal the gradation change which moves towards along the

57、 edge is fierce, usually we divide the edge for the step shape and the roof shape two kind of types (as shown in Figure 1-1).In the step edge two side grey levels h</p><p>  3.3 paper selected topic theory s

58、ignificance</p><p>  The paper selected topic originates in holds the important status and the function practical application topic in the image project.The so-called image project discipline is refers found

59、ation discipline and so on mathematics, optics principles, the discipline which in the image application unifies which accumulates the technical background develops.The image project content is extremely rich, and so on

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論