文獻(xiàn)翻譯--溫室監(jiān)控系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)基于gsm和射頻技術(shù)_第1頁(yè)
已閱讀1頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  2215單詞,1.2萬(wàn)英文字符,3540漢字</p><p>  出處:Zhao X, Zheng X, Chen D, et al. The design and implementation of the greenhouse monitoring system based on GSM and RF technologies[C]// International Conference

2、on Computational Problem-Solving. IEEE, 2013.</p><p>  The Design and Implementation of the Greenhouse</p><p>  Monitoring System Based on GSM and RF Technologies</p><p>  X Zhao,X

3、Zheng,C Duan,Z Chen</p><p><b>  Abstract</b></p><p>  According to the characteristics of small and medium-sized greenhouse environmental monitoring, this paper proposes a solution t

4、o remote greenhouse environmental monitoring which is based on GSM technology and RF. The system constitutes the regional environmental information monitoring network and close communication platform based on radio frequ

5、ency. Combined with the remote communication technology based on GSM networks, the system implements small and medium-sized greenhouse environmental mon</p><p>  structure and software workflow chart. It sho

6、ws that the system is stable, reliable, and it’s able to achieve real-time monitoring of greenhouse environment.</p><p>  Keywords: RF; sink node; wireless communication; greenhouse environmental monitoring;

7、 wireless sensor network</p><p>  I. Introduction</p><p>  In recent years, with the rapid development of the greenhouse industry, the greenhouse environment control technology is of higher requ

8、irements because of how to obtain accurate and reliable information, as described by [1-2]. In China, most of existing greenhouse control systems uses wired communication, which inevitably faces with wiring problem. The

9、wiring problem includes mass construction, high cost, installation and maintenance difficulties and that a broken node is likely to cause the ent</p><p>  Through literature review, it is found that some dom

10、estic scholars utilized wireless sensor network technology in [3-4]; while some scholars used microprocessors with Zigbee technology and multi-sensor fusion technology to design</p><p>  greenhouse monitorin

11、g sensor nodes, as in [5]; And some scholars utilized interventional Internet or Intranet way to achieve remote monitoring in [6]; Ref.[2] presented there were also some scholars who used GSM technology combined with wir

12、eless sensor network technology to design greenhouse environment monitoring system. These projects are relatively good designs, but their hardware designs are</p><p>  complex and of high cost, especially in

13、 small greenhouse monitoring applications, the cost performance is not high. In view of this, I integrate GSM wireless communication technology and radio frequency (RF) technology, and make the use of the existing GSM ne

14、twork terminal - GSM module for remote data transmission application conditions merging with the RF technology. Eventually, I put forward a cost-effective solution to small and medium-sized greenhouse monitoring. The sys

15、tem based on RF techn</p><p>  short distances and requiring high reliability.</p><p>  II. System Architecture</p><p>  The greenhouse monitoring system integrates the RF technolog

16、y and GSM technology and applies the RF technology to the design of wireless monitoring nodes and sink nodes. Through initializing the RF module PTR4000 and matching address, the data collected by monitoring nodes is del

17、ivered to the sink nodes which deal with the received data. The processed data is uploaded to the specified server by the remote communication terminal (GTM900-C) based on GSM network. The data transmission between monit

18、</p><p>  monitoring node and sink node form a local area network and the data is sent to the specified server by a common GSM module, which prevents the uploading of single data, thus greatly reducing syste

19、m development costs.</p><p>  The monitoring system is mainly composed of three parts: wireless monitoring nodes, sink nodes, and remote communications terminal based on GSM network. The system architecture

20、is shown in Fig. 1.</p><p>  Monitoring nodes are used to collect parameters of greenhouse environment such as temperature, humidity and so on. Sink node is monitoring data collector and sorter, which is res

21、ponsible for monitoring communications between the region and the server. Sink node receives the data sent by motoring nodes, analyzes it to make a decision, and then remotely delivers the processed data through GSM modu

22、le. Each motoring node is equipped with wireless communication RF module so that the parameters of gre</p><p>  module which is used to achieve communication between sink node and remote sever.</p>&l

23、t;p>  Figure 1 The system architecture</p><p>  III. The Hardware Design </p><p>  A. The Hardware Design of Monitoring Nodes</p><p>  Monitoring nodes use ATmega16A as MCU, and

24、 utilize PTR4000 as the RF module. MCU initializes PTR4000 to select the working way of monitoring nodes and match communication address. After monitoring nodes receive the instructions sent by sink node, MCU sends the d

25、ata collected by sensors to specified sink node through PTR4000.</p><p>  As shown in Fig. 2, the whole hardware system involves power module, microprocessor module, RF module and data acquisition modules.&l

26、t;/p><p>  Figure 2 The monitoring node hardware circuits diagram</p><p>  In the design, the high-speed and low-power data transmission module PTR4000 based on one-chip wireless transceiver chip

27、nRF2401A which is issued by Nordic is selected as wireless communication RF module. Ref. [7-8] presented the chip’s characteristics. It is of low power and its operating voltage is 1.9V~3.6V. A 2.4GHz antenna is built in

28、 the chip and it takes global open 2.4GHz band, which establishes 128 channels (each channel bandwidth is 1MHz) between 2400MHz and 2527MHz and the switching t</p><p>  detection is built in the chip so that

29、 error rate can be reduced without increasing the difficulty of programming. The chip supports multi-point communication with efficient GMSK modulation and the maximum transfer rate is up to 1Mbit/s. The module address c

30、an be set by software so that the data can be output only if the address of the local machine is received. The data collecting module is mainly responsible for collecting parameters of greenhouse environment and we can&l

31、t;/p><p>  configure a variety of temperature and humidity sensors required by monitoring greenhouse environment according to the requirements. (Attention: DS18B20 temperature sensor is deployed in the test.) I

32、n terms of microprocessor, I select the</p><p>  low-power CMOS microcontroller ATmega16A based on enhanced AVR RISC architecture issued by ATMEL, which is used to control the data collecting module and the

33、RF module. As to power module, solar cells are selected as the power system as in [9]. The entire solar cell system is composed of solar panels, solar charge controller and battery constituting. As the power consumption

34、of monitoring nodes is low, the power system can ensure the normal operation of the monitoring network.</p><p>  B. The Hardware Design of Sink Nodes</p><p>  Sink node uses ATmega16A as MCU, ut

35、ilizes PTR4000 as the RF module and selects GTM900-C as the GSM module. Through controlling the RF module and the GSM module, MCU uploads the data information to the specialized severs. Firstly, sink node sends instructi

36、ons. Then, corresponding monitoring nodes receive instructions and transmit the data collected by sensors to the sink node through PTR4000. And then the RF module PTR4000 in the sink node receives the data and sends the

37、data processed by MCU to </p><p>  Fig. 3 shows the entire hardware system including the power module, the microprocessor module, the RF module, the keyboard and the GSM remote communication module.</p>

38、;<p>  Figure 3 The sink node hardware circuits diagram</p><p>  In the design, the microcontroller ATmega16A is selected as the microprocessor to control the RF module and the GSM module instantly a

39、nd figure out the gathered parameters of greenhouse environment. And PTR4000 is used as the wireless communication RF module to receive the data information delivered by respective monitoring nodes. I choose the GTM900-C

40、 produced by HuaWei as the GSM</p><p>  emote communication module to upload the processed data to the specialized sever. As described by [10], the GTM900-C wireless module is a two-band GSM / GPRS wireless

41、module which supports standard AT commands and enhances AT commands and provides plenty of short messages, voice and data services and other functions. It is an ideal solution for a variety of applications such as high-s

42、peed data transmission.</p><p>  In terms of the power module, solar cells are selected as the power system as in [9].</p><p>  IV. The Design Of Communication Protocol</p><p>  A.

43、The design of PTR4000 communication protocol</p><p>  When using PTR4000 for wireless data communication, we do not need Manchester coding and are easy to program and apply. As long as we follow the configur

44、ation instructions (seeing Table I), what we need to do is just to write the hardware address of the nodes and sink nodes, data length and the rest of the configuration word to the status word. In this system, the sink c

45、ode address is 0x3a3b3c3d3e and the monitoring node addresses are 0x1a1b1c1d1e, 0x2a2b2c2d2e.</p><p>  Both nodes and sink node are 16 parity bits. The parity bit is enabled, single, burst mode, 1Mb/s, cryst

46、al frequency 16MHZ, operating frequency 2400MHZ and the lowest bit 0 is emission (it can be temporarily configured when needing to receive data temporarily).</p><p>  TABLE 1 PTR4000C On Figuration Keyword

47、List</p><p>  B. The design of GTM900 communication protocol</p><p>  HUAWEI GTM900-C wireless module is a two band GSM/GPRS wireless module, it supports standard AT commands, and enhances the A

48、T command, and provides a rich text messages, voice and data services, and other functions, is the ideal solution for various applications such as high-speed data transfer. GTM900-C integrates TCP/IP protocol and uses th

49、e expansion of the internal the AT command. According to the manual of the GTM900-C wireless module AT commands, users need only send the compiled AT comman</p><p>  Command "AT" / / test GTM900-C

50、is ready;</p><p>  Return OK;</p><p>  Command "AT + CMGF = 1" / / set to send data in the form of text;</p><p>  Return OK;</p><p>  Command "AT + CMGS

51、= '11 phone number' / / connect to the server, set the server number;</p><p>  Return ">";</p><p>  Type the contents and sent them by the means of “Ctrl+Z";</p>

52、<p>  Return OK;</p><p>  V. The Software Design</p><p>  A. The software design of monitoring node</p><p>  The key of the design of Monitoring nodes of process is communicat

53、ion of microcontroller and PTR4000 module. Its workflow chart is shown in Fig. 4. When Monitoring node is electrified, sensor and RF module PTR4000 will initialize, and then PTR4000 to enter configuration mode. We based

54、on PTR4000 to write configuration, so that it is in receiving mode. Until PTR4000 receives the sink node command, the monitoring node will start to work. After the completion of the acquisition data, RF module PTR4</p

55、><p>  sent to the sink node. After sending, RF module PTR4000 will be into receiving mode and wait for the arrival of the next sink node command.</p><p>  Figure 4 The workflow chart of monitorin

56、g nodes.</p><p>  B. The software design of sink node</p><p>  It’s the key to SCM, GTM900 module and PTR4000 module communication. Its workflow chart is shown in Fig. 5.</p><p>  F

57、igure 5 The workflow chart of sink node.</p><p>  After powered on, the sink node device initializes and sets the server address (i.e., input 11 phone number). Then, RF module PTR4000 is into sleeping mode

58、and Microcontroller start timer. After the prescribed time, we make PTR4000 at the sending mode via writing configuration word to RF module. At this time, sink node sends commands to the monitoring node. The monitoring n

59、ode starts to collect relevant data and information in greenhouse, and sends the collected data to the sink node. Sink node </p><p>  VI. The Experimental Results </p><p>  After establishing th

60、e greenhouse environment monitoring system, test experiment was carried out in the open area and indoor to test the transmission distance and the BER of the system. The open experiment was selected on the school track an

61、d field. Through comparing the sending data with receiving data, We found that the error-free data transmission distance was up to 50 m, more than the distance we didn’t receive any data; The indoor test was selected in

62、YiFu building study room. In an interva</p><p>  In the process of the experiment, we found that the received data is either right or we didn’t receive any data; there is no error rate of the problem.</p&

63、gt;<p>  VII. Conclusions</p><p>  According to the characteristics of the greenhouse environmental monitoring, the article puts forward a kind of design scheme of greenhouse environmental information

64、 remote monitoring system based on RF technology and GSM communication technology. And it introduces the overall structure of the system and the software and hardware design method of each part in detail. It provides a c

65、ost-effective solution for the small and medium-sized greenhouse monitoring.</p><p>  References</p><p>  [1] Yang Wei, Li Min-zan, and Wang Xiu, “Status Quo and Progress of Data Transmission an

66、d Communication Technology in Field Information Acquisition,” Transactions of the CSAE, 2008, vol. 24, pp.297-301.</p><p>  [2] Yang Jing, Bai Bao-liang and Li Han-dong, “Design of Greenhouse Environment Mon

67、itoring System Based on GSM and WSN,” Journal of Anhui Agricultural Sciences, 2012, vol. 40, pp. 2497-2498, 2556.</p><p>  [3] Gao Feng, Yu Li, Zhang Wen-an, Xu Qing-xiang and Yu Li-jie, “Research and Design

68、 of Crop Water Status Monitoring System Based on Wireless Sensor Networks,” Transactions of the CSAE, 2009, vol.25, pp. 107-112.</p><p>  [4] Tang Yi-feng, Chen Xin-hua, Feng Hui and Luo Bin, “Design of Wire

69、less Sensor Network Node for Environmental Monitoring in Greenhouse,” Journal of Hunan Agricultural Sciences, 2010, pp. 146-148, 151.</p><p>  [5] Wang Dong, “Research and Realization Control System of Green

70、house Environmental Based on Muti-Sensor Fusion,” Thesis for Master Degree, Northwest A&F University, 2012.</p><p>  [6] Wang Yi and Zhou Jie, “Design and Realization of Remote Monitoring System of Green

71、house Environment by Using GSM,” Modern Electronics Technique, 2008, vol. 31, pp. 151-154.</p><p>  [7] Liao Ping and Qiao Gang, “Short Range Wireless Communication System from One to Many Based on NRF2401,”

72、 Modern Electronics Technique, 2006, vol. 29, pp. 18-20.</p><p>  [8] Zhang Chong, Lin Xiao and Liu Ping-jian, “Design for Remote and High Speed Wireless Communication Based on NRF2401,” International Ele

73、ctronic Elements, 2007, vol. 14, pp. 84-86.</p><p>  [9] Zhu Ying-li, Song Jing-jiang and Dong Fu-zhou, “Applications of Wireless Sensor Network in the Agriculture Environment Monitoring,” Procedia Engineeri

74、ng, 2011, vol. 16, pp. 608-614[Elsevier Ltd. Selection, in the press, 2010].</p><p>  [10] Xian Jin-long and Yang Yang, “Study and Implication of Remote Grain Situation Measurement and Control Based on GTM90

75、0,” Journal of Henan University of Technology ( Natural Science Edition), 2011, vol.32, pp. 79-82.</p><p>  溫室監(jiān)控系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)基于GSM和射頻技術(shù)</p><p><b>  摘要</b></p><p>  根據(jù)中小溫室環(huán)境監(jiān)測(cè)

76、的特點(diǎn),提出了一種基于GSM和射頻技術(shù)來(lái)解決遠(yuǎn)程溫室環(huán)境監(jiān)測(cè)。系統(tǒng)構(gòu)成了區(qū)域環(huán)境信息監(jiān)測(cè)網(wǎng)絡(luò)和基于射頻的密切溝通平臺(tái)。基于GSM網(wǎng)絡(luò)的遠(yuǎn)程通信技術(shù),該系統(tǒng)實(shí)現(xiàn)了中小溫室環(huán)境監(jiān)測(cè)。使用ATmega16A、低功耗芯片PTR4000和華為無(wú)線模塊GTM900-C設(shè)計(jì)系統(tǒng)的監(jiān)測(cè)節(jié)點(diǎn)和水槽節(jié)點(diǎn),本文給出了系統(tǒng)的硬件結(jié)構(gòu)和軟件流程圖表。它表明,系統(tǒng)是穩(wěn)定的、可靠的,能夠?qū)崿F(xiàn)對(duì)溫室環(huán)境的實(shí)時(shí)監(jiān)控。</p><p>  關(guān)鍵詞:

77、射頻 水槽節(jié)點(diǎn) 無(wú)線通信 溫室環(huán)境監(jiān)測(cè)的無(wú)線傳感器網(wǎng)絡(luò)</p><p><b>  1 介紹</b></p><p>  近年來(lái),隨著溫室產(chǎn)業(yè)的快速發(fā)展,考慮到如何獲得準(zhǔn)確、可靠的信息,對(duì)溫室環(huán)境控制技術(shù)需求越來(lái)越高,就像[1-2]中所述。在中國(guó),大多數(shù)現(xiàn)有的溫室控制系統(tǒng)使用有線通信,這不可避免地面臨著布線的問(wèn)題。布線的問(wèn)題包括質(zhì)量建設(shè)、高成本、安裝、維護(hù)困難

78、和破碎的節(jié)點(diǎn)可能會(huì)導(dǎo)致整個(gè)系統(tǒng)的工作。使用無(wú)線通信是解決這些問(wèn)題的最好方法。無(wú)線通信不需要布線、成本低、易于維護(hù),還可以增加或減少測(cè)量任意節(jié)點(diǎn)。因此,它具有良好的應(yīng)用前景。</p><p>  通過(guò)文獻(xiàn)綜述,發(fā)現(xiàn)一些國(guó)內(nèi)學(xué)者利用無(wú)線傳感器網(wǎng)絡(luò)技術(shù)[3-4],使用微處理器和無(wú)線局域網(wǎng)技術(shù)和多傳感器融合技術(shù)設(shè)計(jì)溫室監(jiān)測(cè)傳感器節(jié)點(diǎn),如[5];另一些學(xué)者利用介入互聯(lián)網(wǎng)或局域網(wǎng)方式來(lái)達(dá)到遠(yuǎn)程監(jiān)控[6];在Ref.[2]中也

79、有一些學(xué)者提出了使用GSM技術(shù)結(jié)合無(wú)線傳感器網(wǎng)絡(luò)技術(shù)設(shè)計(jì)的溫室環(huán)境監(jiān)測(cè)系統(tǒng)。這些項(xiàng)目是相對(duì)良好的設(shè)計(jì),但是他們的硬件設(shè)計(jì)是復(fù)雜而且高成本的,特別是在小型溫室監(jiān)控應(yīng)用程序中,性價(jià)比不高。針對(duì)這一點(diǎn),我將通過(guò)GSM無(wú)線通訊技術(shù)和射頻(RF)技術(shù),并使用現(xiàn)有的GSM網(wǎng)絡(luò)終端——GSM模塊遠(yuǎn)程數(shù)據(jù)傳輸應(yīng)用程序與射頻技術(shù)合并;最后,我提出了一個(gè)符合成本效益的中小溫室監(jiān)控系統(tǒng)的解決方案。基于射頻技術(shù)的系統(tǒng)構(gòu)成了區(qū)域環(huán)境信息監(jiān)測(cè)網(wǎng)絡(luò),結(jié)合GSM遠(yuǎn)程通

80、信技術(shù),實(shí)現(xiàn)了小溫室環(huán)境遠(yuǎn)程的成功監(jiān)控。實(shí)驗(yàn)結(jié)果表明,該系統(tǒng)特別適合數(shù)據(jù)采集系統(tǒng)和短距離要求,可靠性高。</p><p><b>  2 系統(tǒng)架構(gòu)</b></p><p>  溫室監(jiān)控系統(tǒng)集成了射頻技術(shù)和GSM技術(shù),射頻技術(shù)適用于無(wú)線監(jiān)測(cè)節(jié)點(diǎn)和水槽節(jié)點(diǎn)的設(shè)計(jì)。通過(guò)射頻模塊初始化PTR4000和匹配地址,收集到的數(shù)據(jù)通過(guò)監(jiān)測(cè)節(jié)點(diǎn)交付給水槽節(jié)點(diǎn)處理,處理過(guò)的數(shù)據(jù)上傳到指

81、定服務(wù)器,即基于GSM網(wǎng)絡(luò)遠(yuǎn)程通信終端(GTM900-C)。監(jiān)控節(jié)點(diǎn)之間的數(shù)據(jù)傳輸降低了功率,傳輸速度變快,除了每個(gè)監(jiān)測(cè)節(jié)點(diǎn)和匯聚節(jié)點(diǎn)形成一個(gè)局域網(wǎng)絡(luò)外,數(shù)據(jù)由一個(gè)共同的GSM模塊發(fā)送到指定的服務(wù)器,從而防止單一數(shù)據(jù)的上傳,從而大大降低了系統(tǒng)的開發(fā)成本。</p><p>  監(jiān)控系統(tǒng)主要由三部分組成:無(wú)線監(jiān)測(cè)節(jié)點(diǎn),水池節(jié)點(diǎn),基于GSM網(wǎng)絡(luò)的遠(yuǎn)程通信終端。系統(tǒng)架構(gòu)圖1所示。</p><p>

82、  監(jiān)控節(jié)點(diǎn)用于收集溫室環(huán)境參數(shù),如溫度、濕度等;水槽節(jié)點(diǎn)監(jiān)測(cè)數(shù)據(jù)收集器和分選機(jī),負(fù)責(zé)監(jiān)控區(qū)域和服務(wù)器之間的通信。匯聚節(jié)點(diǎn)接收監(jiān)控節(jié)點(diǎn)發(fā)送的數(shù)據(jù),分析并做出決定,然后通過(guò)GSM模塊遠(yuǎn)程加工數(shù)據(jù)。每個(gè)監(jiān)控節(jié)點(diǎn)配備無(wú)線通信射頻模塊用于溫室環(huán)境參數(shù)的傳輸。水槽節(jié)點(diǎn)不僅配備了無(wú)線通信射頻模塊,而且配置了GSM通信模塊用于實(shí)現(xiàn)匯聚節(jié)點(diǎn)和遠(yuǎn)程服務(wù)器之間的通信。</p><p><b>  圖1 系統(tǒng)架構(gòu)</

83、b></p><p><b>  3 硬件設(shè)計(jì)</b></p><p>  3.1 監(jiān)測(cè)節(jié)點(diǎn)的硬件設(shè)計(jì)</p><p>  監(jiān)控節(jié)點(diǎn)使用ATmega16A單片機(jī),利用PTR4000射頻模塊。單片機(jī)初始化PTR4000、選擇監(jiān)測(cè)節(jié)點(diǎn)的工作方式和與通信地址相匹配,之后監(jiān)測(cè)節(jié)點(diǎn)接收匯聚節(jié)點(diǎn)發(fā)送的指令,單片機(jī)通過(guò)PTR4000指定將傳感器采集的

84、數(shù)據(jù)發(fā)送給匯聚節(jié)點(diǎn)。</p><p>  如圖2所示,整個(gè)硬件系統(tǒng)包括電源模塊、微處理器模塊、射頻模塊和數(shù)據(jù)采集模塊。</p><p>  圖2 監(jiān)控節(jié)點(diǎn)硬件電路框圖</p><p>  在設(shè)計(jì)高速、低功耗數(shù)據(jù)傳輸模塊PTR4000的上,選擇基于單芯片的無(wú)線收發(fā)芯片nRF2401A作為無(wú)線通信射頻模塊。Ref. [7-8] 介紹了芯片的特點(diǎn),低功率,其工作電壓為1

85、.9 v ~ 3.6 v。2.4 GHz天線是建立在全球開放的2.4 GHz芯片上,它建立了128個(gè)頻道(每個(gè)通道帶寬1 MHz)2400 MHz和2527兆赫之間通道之間的切換時(shí)間小于200ms。硬件CRC錯(cuò)誤檢測(cè)是建立在芯片內(nèi),這樣可以減少出錯(cuò)率而且不增加編程的難度。芯片支持多點(diǎn)有效溝通,實(shí)現(xiàn)GMSK調(diào)制和最大傳輸速率為1 Mbit/s。模塊地址可以通過(guò)軟件設(shè)置,數(shù)據(jù)只有在接收到本地機(jī)器的地址后才能輸出。數(shù)據(jù)采集模塊主要負(fù)責(zé)收集溫室

86、環(huán)境參數(shù),我們可以根據(jù)需求配置各種所需的溫度和濕度傳感器監(jiān)測(cè)溫室環(huán)境。(注意:DS18B20溫度傳感器部署在測(cè)試端)。對(duì)于微處理器,我選擇低功耗的CMOS單片機(jī)ATmega16A,基于增強(qiáng)型ATMEL AVR RISC體系結(jié)構(gòu),用于控制數(shù)據(jù)采集模塊和射頻模塊。電源模塊,我選擇太陽(yáng)能電池作為電力系統(tǒng)[9],整個(gè)太陽(yáng)能電池系統(tǒng)是由太陽(yáng)能電池板、太陽(yáng)能充電控制器和電池組成。監(jiān)控節(jié)點(diǎn)的功</p><p>  3.2 水槽

87、節(jié)點(diǎn)的硬件設(shè)計(jì)</p><p>  水槽節(jié)點(diǎn)使用ATmega16A作為單片機(jī),利用PTR4000射頻模塊并選擇GTM900-C為核心的GSM模塊。通過(guò)控制射頻模塊和GSM模塊,單片機(jī)作為上傳數(shù)據(jù)信息的專用服務(wù)器。首先,水池節(jié)點(diǎn)發(fā)送指令;然后,接收指令并傳送相應(yīng)的監(jiān)測(cè)節(jié)點(diǎn)收集到的數(shù)據(jù)到傳感器和PTR4000水槽節(jié)點(diǎn);接著,由單片機(jī)控制PTR4000 RF模塊和GTM900為核心的GSM模塊,將水槽節(jié)點(diǎn)接收到的數(shù)據(jù)發(fā)

88、送出去;最后,GTM900通過(guò)使用命令上傳數(shù)據(jù)信息至預(yù)設(shè)服務(wù)器。</p><p>  圖3顯示了整個(gè)硬件系統(tǒng),包括電源模塊、微處理器模塊、射頻模塊、鍵盤和GSM遠(yuǎn)程通信模塊。</p><p>  圖3 水槽節(jié)點(diǎn)硬件電路框圖</p><p>  在設(shè)計(jì)中,單片機(jī)ATmega16A作為微處理器來(lái)控制射頻模塊和GSM模塊,并立即計(jì)算出聚集的溫室環(huán)境參數(shù)。PTR4000作為

89、無(wú)線通信射頻模塊,由各自監(jiān)控節(jié)點(diǎn)接收數(shù)據(jù)信息。我選擇華為生產(chǎn)的以GTM900-C為核心的GSM通信模塊,將處理過(guò)的數(shù)據(jù)上傳到專門的服務(wù)器。像[10]所述,GTM900-C無(wú)線模塊是一個(gè)雙波段GSM/GPRS無(wú)線模塊,支持標(biāo)準(zhǔn)AT指令,增強(qiáng)AT指令的可讀性,提供了大量的短信、語(yǔ)音、數(shù)據(jù)服務(wù)和其他功能,這為各種應(yīng)用例如高速數(shù)據(jù)傳輸?shù)忍岢隽艘粋€(gè)理想的解決方案。電源模塊則選擇太陽(yáng)能電池作為電力系統(tǒng)[9]。</p><p>

90、;  4 通信協(xié)議的設(shè)計(jì)</p><p>  4.1 PTR4000通信協(xié)議的設(shè)計(jì)</p><p>  當(dāng)使用PTR4000無(wú)線數(shù)據(jù)通信時(shí),我們不需要進(jìn)行曼徹斯特編碼,這樣更易于程序的編寫和應(yīng)用擴(kuò)展。只要我們遵循配置說(shuō)明(見表1),我們需要做的就是寫硬件地址節(jié)點(diǎn)、水槽節(jié)點(diǎn)、數(shù)據(jù)長(zhǎng)度和其余的配置字的狀態(tài)。在此系統(tǒng)中,水槽代碼地址是0 x3a3b3c3d3e,監(jiān)控節(jié)點(diǎn)地址是0 x1a1b1c

91、1d1e 0 x2a2b2c2d2e。節(jié)點(diǎn)和匯聚節(jié)點(diǎn)都是16個(gè)奇偶校驗(yàn)位。啟用校驗(yàn)位,單邊的,爆發(fā)模式,1 Mb/s,晶體頻率為16兆赫,工作頻率2400 MHz和最低0排放(當(dāng)需要臨時(shí)接收數(shù)據(jù)時(shí),它可以暫時(shí)配置)。</p><p>  表1 PTR4000C關(guān)鍵字列表</p><p>  4.2 GTM900通信協(xié)議的設(shè)計(jì)</p><p>  華為GTM900-

92、C無(wú)線模塊包含GSM/GPRS兩個(gè)無(wú)線模塊,它支持AT指令,增強(qiáng)AT指令的應(yīng)用,并提供了文本消息、語(yǔ)音、數(shù)據(jù)服務(wù)和其他功能,是高速數(shù)據(jù)傳輸?shù)雀鞣N應(yīng)用程序的理想解決方案。GTM900-C集成了TCP / IP協(xié)議,并且內(nèi)部使用AT命令進(jìn)行編程。根據(jù)GTM900-C無(wú)線模塊手冊(cè)提供的命令,用戶只需要通過(guò)單片機(jī)和串行端口編譯命令發(fā)送到無(wú)線模塊GTM900-C,然后它可以實(shí)現(xiàn)初始化和數(shù)據(jù)發(fā)送。其主要步驟如下:</p><p&

93、gt;  Command "AT" / / 測(cè)試 GTM900-C準(zhǔn)備就緒;</p><p>  Return OK;</p><p>  Command "AT + CMGF = 1" / /以文本的形式發(fā)送數(shù)據(jù);</p><p>  Return OK;</p><

94、;p>  Command "AT + CMGS = '11 phone number' / /連接服務(wù)器,并設(shè)置號(hào)碼;</p><p>  Return ">";</p><p>  Type the contents and sent them by the means of “Ctrl+Z";</p>&

95、lt;p>  Return OK;</p><p><b>  5 軟件設(shè)計(jì) </b></p><p>  5.1 監(jiān)控節(jié)點(diǎn)的軟件設(shè)計(jì)</p><p>  監(jiān)控節(jié)點(diǎn)設(shè)計(jì)過(guò)程的關(guān)鍵是單片機(jī)和PTR4000模塊之間的通信,其工作流程圖表如圖4。當(dāng)監(jiān)測(cè)節(jié)點(diǎn)帶電時(shí),將初始化傳感器和射頻模塊PTR4000,然后PTR4000進(jìn)入配置模式?;赑T

96、R4000所寫的配置,其處于接收模式,直到PTR4000收到水槽節(jié)點(diǎn)的命令,監(jiān)控節(jié)點(diǎn)將開始工作。收集數(shù)據(jù)完成后,射頻模塊PTR4000進(jìn)入交付模式,并將收集到的數(shù)據(jù)發(fā)送到匯聚節(jié)點(diǎn)。發(fā)送完成后,射頻模塊PTR4000又將進(jìn)入接收模式,等待下一個(gè)水槽節(jié)點(diǎn)的命令的到來(lái)。</p><p>  圖4 監(jiān)測(cè)節(jié)點(diǎn)的工作流程圖表</p><p>  5.2 匯聚節(jié)點(diǎn)的軟件設(shè)計(jì)</p>&l

97、t;p>  這是GTM900模塊和PTR4000模塊通信供應(yīng)鏈管理的關(guān)鍵。其工作流程圖表圖5所示。</p><p>  圖5 水槽節(jié)點(diǎn)的工作流程圖表</p><p>  系統(tǒng)啟動(dòng)后,水槽節(jié)點(diǎn)設(shè)備初始化并設(shè)置服務(wù)器地址(即輸入電話號(hào)碼)。然后,射頻模塊PTR4000進(jìn)入睡眠狀態(tài),單片機(jī)開始計(jì)時(shí)。通過(guò)規(guī)定的時(shí)間后,我們通過(guò)PTR4000射頻模塊發(fā)送模式配置字。在這個(gè)時(shí)候,水槽節(jié)點(diǎn)發(fā)送命

98、令至監(jiān)視節(jié)點(diǎn),監(jiān)測(cè)節(jié)點(diǎn)在溫室開始收集相關(guān)數(shù)據(jù)和信息,并將收集到的數(shù)據(jù)發(fā)送給匯聚節(jié)點(diǎn),匯聚節(jié)點(diǎn)進(jìn)行數(shù)據(jù)的接收和處理。在微處理器的控制下,通過(guò)GSM模塊將結(jié)果發(fā)送到服務(wù)器(GTM900-C)?,F(xiàn)在,我們意識(shí)到時(shí)間采集的功能,中斷返回后,系統(tǒng)將再次回到待機(jī)模式,等待下一個(gè)采樣周期的到來(lái)。</p><p><b>  6 實(shí)驗(yàn)結(jié)果</b></p><p>  建立好溫室環(huán)境

99、監(jiān)測(cè)系統(tǒng)后,我們進(jìn)行了開放地區(qū)和室內(nèi)地區(qū)的測(cè)試實(shí)驗(yàn),主要測(cè)試系統(tǒng)的傳輸距離和誤碼率。開放實(shí)驗(yàn)是選擇在學(xué)校田徑場(chǎng),通過(guò)比較發(fā)送數(shù)據(jù)和接收數(shù)據(jù),我們發(fā)現(xiàn)錯(cuò)誤數(shù)據(jù)傳輸距離在50米,以上的距離我們沒有收到任何數(shù)據(jù);室內(nèi)測(cè)試被選中在逸夫樓自習(xí)室,在間隔的墻壁兩邊,通過(guò)比較發(fā)送數(shù)據(jù)和接收數(shù)據(jù),我們發(fā)現(xiàn)錯(cuò)誤數(shù)據(jù)傳輸距離達(dá)到13米,以上的距離我們也沒有收到任何數(shù)據(jù)。</p><p>  在實(shí)驗(yàn)的過(guò)程中,我們發(fā)現(xiàn)接收的數(shù)據(jù)是正確的

100、或沒有收到任何數(shù)據(jù),錯(cuò)誤率為零。</p><p><b>  7 結(jié)論</b></p><p>  根據(jù)溫室環(huán)境監(jiān)測(cè)的特點(diǎn),本文提出了一種設(shè)計(jì)方案,是基于射頻技術(shù)和GSM通信技術(shù)的溫室環(huán)境信息遠(yuǎn)程監(jiān)控系統(tǒng),這里介紹了系統(tǒng)的總體結(jié)構(gòu)和各部分軟件和硬件的設(shè)計(jì)方法。它提供了一個(gè)在中小溫室監(jiān)控條件下具有成本效益的解決方案。</p><p><b

101、>  參考文獻(xiàn)</b></p><p>  [1] Yang Wei, Li Min-zan, and Wang Xiu, “數(shù)據(jù)傳輸和通信技術(shù)領(lǐng)域信息采集的進(jìn)展和現(xiàn)狀” , 農(nóng)業(yè)工程學(xué)報(bào), 2008,卷24, pp.297-301.</p><p>  [2] Yang Jing, Bai Bao-liang and Li Han-dong, “基于GSM和傳感器網(wǎng)絡(luò)的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論