2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  Considerations on recent trends in, steel bridge construction in Japan</p><p>  Abstract In this paper, consideration is given on recent trends in, steel bridge construction in Japan. As far as r

2、ecent trends are concerned, it is observed that the construction of long and big steel bridges has practically been completed. Consequently, the focus of recent main works is the maintenance of superannuated (averaged) b

3、ridges and the seismic retrofitting of existing bridges. The refreshment and regeneration of some superannuated bridges is also needed recently in order to mitigate</p><p>  1.1 Construction trend</p>

4、<p>  In Japan, many bridges were intensively constructed in the 1960s–80s, during the period of high economic growth, with the number of bridges constructed per year decreasing recently to half of the overall peak

5、. More specifically, the steel bridge industry reached the golden age in the latter half of the 1960s. However, the latest data indicates that the recent number of constructed steel bridges has declined to approximately

6、40% of its peak, though the number of constructed RC and PC bridges rema</p><p>  After the construction of many bridges as one of the important infrastructures, bridges were constructed predominantly in pla

7、ces of direct need. Recently, it is observed that various kinds of damage have occurred to many bridges mainly constructed in the 1960s. </p><p>  Especially following the investigation of damage to steel st

8、ructures due to the Hyogo-ken Nambu Earthquake which occurred in 1995, importance has been attached to seismic design for the construction of new bridges and to seismic retrofitting for existing steel bridges, aiming to

9、utilize the ductility of steel bridge members and structures. Many repair and seismic retrofitting works of bridge structures damaged as a result of the earthquake have been carried out and these works are due to finish

10、</p><p>  Recently, the seismic retrofitting works of long-span steel bridges has started. For example, the seismic retrofitting work of the Minato Bridge in Osaka, a big cantilever truss bridge with a main

11、span of 510 m is now under way, with an estimated budget of 6000 million Japanese Yen and a works duration of 5 years. The Maitani Bridge located in Nara Prefecture, a deck-type steel girder bridge with the span length o

12、f 112 m is also undergoing seismic retrofitting. </p><p>  Nowadays, many existing steel bridges exhibit some form of deterioration, such as the corrosion of steel members, fatigue cracks in RC slabs, steel

13、decks and steel members due to the passage of many overweight vehicles, much heavier than those specified in the Japanese Specifications for Highway Bridges (JSHB), and so on. As a result, many bridges require substantia

14、l strengthening and repair works. Instead of the construction of large and long-span bridges, the retrofitting, strengthening, repai</p><p>  In Japan, many bridges have been constructed to establish an effi

15、cient highway network since World War II. Attention has been, however, paid mainly to the construction of safe and standard bridges with, as far as possible, uniform quality with regard to design loads. Until recently, g

16、overnments could not afford to consider the harmony between the bridges and their surrounding environment. </p><p>  For example, it is very difficult to have a clear and unobstructed view of the beautiful a

17、nd historically important Osaka Castle due to the high-rise buildings and elevated highway bridges. This is an example of the undesirable influence of elevated bridges on their surrounding environment. </p><p

18、>  1.2. Recent main works</p><p> ?。?)Construction of new bridges </p><p>  In the new construction sector, there is severe competition between the steel bridge and concrete bridge industries

19、. This is because the construction of long-span and big bridges, which occupied the steel bridge industry, has declined and, consequently, the steel bridge industry tries to win jobs mainly in the construction of mid-spa

20、n bridges, typically with a span length of 40–80 m. As a result, many economical, rational and mid-span bridges with new types of structures have been developed by b</p><p>  – Plate girder bridges made of t

21、hick steel plates, with fewer stiffeners and less welding lines for cost reduction.</p><p>  – Two-main-plate girder bridges with PC decks.</p><p>  – Continuous, composite and two-main-plate gi

22、rder bridges.</p><p>  – Continuous composite box-girder bridges strengthened by cables to increase their economical span length.</p><p>  – Cable stayed bridges with main girders of H-shaped st

23、eels.</p><p>  – Steel bridges consisting of box girders in the vicinity of the interior supports and plate girders in the other parts.</p><p>  On the other hand, the following new types of PC

24、bridges have also been developed in order to face the competition from the steel bridge industry: </p><p>  – PC box girder bridges with corrugated steel webs.</p><p>  – Compound truss bridges

25、with steel diagonal members and PC flanges.</p><p>  – Cable stayed PC box girder bridges with corrugated steel webs.</p><p> ?。?) Other developments in steel bridge industry </p><p&g

26、t; ?。╥)Repair and strengthening works against fatigue damage and cracks in the following types of bridge members: </p><p>  – Fatigue cracks of secondary steel bridge members.</p><p>  – Fatigue

27、 cracks of RC slabs.</p><p>  – Fatigue cracks of steel decks (some cracks along welding parts between deck plates and trough ribs).</p><p>  – Many cracks at ends of welding parts between the f

28、lange plates of column members and the lower flange plates of horizontal members in steel bridge piers.</p><p>  Repair and strengthening works of these cracks are carried out now. </p><p> ?。╥i

29、)Retrofitting works against increased design live load. </p><p>  – Maximum design live load was changed from 200 kN to 250 kN.</p><p>  (iii)Retrofitting works due to revised design s

30、pecifications. </p><p>  – For example, there was no design method for stiffened plates in JSHB about 40 years ago.</p><p>  (iv) Seismic retrofitting works.</p><p>  (v) Developmen

31、t of bridge management systems based on Life Cycle Cost (LCC) and asset management.</p><p> ?。╲i)Repair and strengthening works of damage to bridge bearings and expansion joints.</p><p> ?。╲ii)M

32、aintenance works on permeable pavements.</p><p>  1.3. Maintenance</p><p>  Regarding the maintenance of bridges, there are many issues that can be solved by the bridge engineering community, th

33、ough there are also many political and economical problems which cannot be solved by the bridge engineering community alone. </p><p>  Issues and problems of bridge maintenance are listed below: </p>

34、<p> ?。?)Definition of terminology and life cycle. </p><p>  – Definition of bridge maintenance.</p><p>  – Unification of the terminology on bridge maintenance.</p><p>  – Dec

35、ision of the life cycle of bridges, members and their parts.</p><p>  (2) Inspection and monitoring. </p><p>  – Labor saving of inspection for maintenance through monitoring bridges, members an

36、d their parts.</p><p>  – Rationalization and cost reduction of inspection methods.</p><p>  – Education for maintenance engineers.</p><p>  – Collection and storage of maintenance

37、data by utilizing IT technology.</p><p>  (3) Evaluation/assessment methods. </p><p>  – Establishment of methods for evaluating the safety and durability of existing bridges and the public anno

38、uncement and communication of evaluated results.</p><p>  – Development of method for deciding the priority ranking of repair and retrofitting of existing bridges.</p><p> ?。?)Maintenance system

39、, and repair and retrofitting technique. </p><p>  – Development of bridge maintenance system including repair and retrofitting technique.</p><p>  – Development of effective feedback system fro

40、m maintenance to design.</p><p>  – Development of techniques for replacing deteriorated bridge structures.</p><p>  – Development of new materials and techniques for maintenance.</p><

41、;p> ?。?) Harmony between bridges and their surrounding environment. </p><p>  – Maintenance considering the co-existence and harmony of aesthetics, – Improvement and refreshment of environment surrounding

42、 bridges for users, inhabitants, and nature.</p><p> ?。?)Budget for maintenance. </p><p>  – Maintenance in case of insufficient budget.</p><p>  – Asset assessment and effective bu

43、dget.</p><p>  1.4. Seismic design and retrofitting </p><p>  Various design methods, retrofitting methods, technologies and materials for seismic design and retrofitting have been developed aft

44、er the Hyogo-ken Nambu Earthquake. The seismic design procedures after the Hyogo-ken Nambu Earthquake are highlighted below: </p><p>  (1) Design seismic loads.</p><p>  There are two levels and

45、 two types of design earthquake specified in JSHB. </p><p>  – Level 1: Maximum elastic response acceleration 300 gal.</p><p>  – Level 2 Type I (ocean plate slip type): Maximum elastic response

46、 acceleration 1000 gal.</p><p>  – Level 2 Type II (inland fault slip type): Maximum elastic response acceleration 2000 gal.</p><p> ?。?) Elastic design is carried out against the Level 1 earthq

47、uake with the safety factor of 1.13.</p><p> ?。?)Elasto-plastic deformation is allowed against Level 2 earthquakes. The safety of a bridge dimensioned on the basis of a Level 1 earthquake is verified by usin

48、g a Level 2 earthquake.</p><p> ?。?)Two types of seismic design methods against Level 2 earthquakes; </p><p>  – Design method A in which the seismic load is reduced by taking into account the e

49、lasto-plastic deformation of main structural members.</p><p>  – Design method B in which the seismic load is reduced by introducing seismic dampers, fuse members, key plastic members, bracing members, and s

50、o on.</p><p>  1.5. Design tools</p><p>  (1)Analytical methods </p><p>  The computer programs developed in Japan are principally used for almost all the elastic linear analyses as

51、sociated with bridge design. In investigating issues to which JSHB can not be applied, the elasto-plastic and finite displacement analyses for framed structures are sometimes carried out, for example, by the computer pro

52、gram EPASS developed by our laboratory and JIP Techno Science Corporation. However, corresponding analyses for plated structures are carried out using computer programs deve</p><p>  Dynamic, elasto-plastic

53、and finite displacement analyses for steel bridge piers subjected to the Level 2 earthquakes are carried out by using computer programs using the yield criterion developed in Japan in terms of cross sectional forces (rat

54、her than stresses). </p><p>  Our laboratory and JIP Techno Science Corporation have developed a computer program EPASS/USSP , a multi-purpose static/dynamic, elasto-plastic and finite displacement solv

55、er for spatial bridge structures consisting of thin-walled steel and composite members considering the local buckling of constituent stiffened plate panels of the members and the elasto-plastic behaviour of the encased c

56、oncrete of the composite members. </p><p>  (2)Experimental methods </p><p>  After the Hyogo-ken Nambu Earthquake, pseudo-dynamic tests have become very popular in Japan. Kyoto University and o

57、ur Osaka City University have developed a multi-phase pseudo-dynamic testing system, which can simulate the dynamic behavior of a structure with multi-mass involving collaboration of many different laboratories connected

58、 through the internet. </p><p>  1.6. New materials and technologies</p><p>  New high-performance materials are continually developed for bridges. Examples include high-performance steel, high-

59、performance bearings, high-ductility and high-strength bolts, carbon fiber reinforced plastic sheets, carbon fiber reinforced plastic cables and so on. Among them, carbon fiber reinforced plastic sheets are used for the

60、repair of superannuated steel girder bridges and RC slabs, and the seismic retrofitting of steel bridge piers with circular cross section. However, it seems to be v</p><p>  On the other hand, various high-p

61、erformance technologies are being developed for seismic design, seismic retrofitting, cost reduction, control of vibration, and so on . </p><p>  日本鋼橋建筑的近期發(fā)展趨向</p><p>  摘要: 在本文中,探討了日本鋼橋建筑的最

62、近發(fā)展趨向。一提到最近趨向,我們就會(huì)發(fā)現(xiàn)長(zhǎng)和大的鋼橋建設(shè)實(shí)際已經(jīng)完成了。于是最近主要工作焦點(diǎn)是老化橋梁和現(xiàn)有橋梁的地震改型維護(hù)。為了緩和一些老化橋梁對(duì)他們周?chē)沫h(huán)境產(chǎn)生不利的影響對(duì)這些橋梁進(jìn)行恢復(fù)和重建是由必要的。為此,維護(hù)和改型工作應(yīng)該是經(jīng)濟(jì)合理的工作。國(guó)家應(yīng)該以JSCE公布的土木工程師工程規(guī)范為基礎(chǔ)來(lái)改型現(xiàn)有的橋梁,使這些橋梁能夠抵御災(zāi)害和緩和橋梁對(duì)周?chē)h(huán)境的不利影響,以此來(lái)了解這些工作的必要性和重要性。而且,橋梁工程師應(yīng)該尋求更好

63、的社會(huì)地位,并且橋梁工程學(xué)領(lǐng)域應(yīng)該對(duì)將承擔(dān)未來(lái)這個(gè)領(lǐng)域的青年學(xué)生變得更有吸引力。</p><p><b>  1.1 建筑趨向</b></p><p>  在日本,在二十世紀(jì)六十年代至八十年代密集的修建了許多橋梁,在經(jīng)濟(jì)高速發(fā)展時(shí)期,每年修建的橋梁數(shù)量減少到全部最高數(shù)量的一半。更特殊的是,到六十年代下半期,剛橋梁產(chǎn)業(yè)到達(dá)了黃金時(shí)代。盡管RC橋梁和PC橋梁的數(shù)量從二十

64、世紀(jì)六十年代初到現(xiàn)在幾乎保持恒定,然而最新數(shù)據(jù)表明,最近修建的鋼橋數(shù)量下降到大約最高量的百分之四十。</p><p>  把許多橋梁的構(gòu)筑看作重要基礎(chǔ)設(shè)施之一后,橋梁就主要修建在直接需要的地方。最近,我們觀察到六十年代修建的許多橋梁上都發(fā)生了各種各樣的災(zāi)害。</p><p>  尤其是通過(guò)對(duì)由1995年發(fā)生的Hyogo-ken Nambu地震造成的鋼結(jié)構(gòu)的破壞的調(diào)查,我們知道新橋的抗震設(shè)計(jì)

65、和現(xiàn)有鋼橋的抗震改型是非常重要的,目的是運(yùn)用鋼橋構(gòu)件和結(jié)構(gòu)的延展性。許多橋梁修理和結(jié)構(gòu)的地震改型工作由于地震的發(fā)生而被破壞,但是這些工作在不久的將來(lái)歸于完成。鋼橋中損壞的部分主要分為橋墩、承力構(gòu)件和保護(hù)橋梁不倒塌的約束構(gòu)件。</p><p>  最近,長(zhǎng)跨度的鋼橋地震改型工作已經(jīng)開(kāi)始了。例如,在大阪minato橋梁的地震改型工作正在進(jìn)行,這是一座主跨度為510m的大懸臂行架橋。工程預(yù)算為60億日元,工期為五年???/p>

66、徑為112m的甲板類型鋼板梁橋也在進(jìn)行著地震改型。</p><p>  現(xiàn)今,許多現(xiàn)有的鋼橋存在著許多的破壞形式。例如鋼結(jié)構(gòu)的腐蝕,由許多超重荷載造成的 RC平板,鋼板和鋼結(jié)構(gòu)的斷裂,這些荷載遠(yuǎn)遠(yuǎn)超出了日本公路橋的規(guī)定荷載。結(jié)果,許多橋梁需要進(jìn)行加固、強(qiáng)化和維修工作。改型、強(qiáng)化、維修、維護(hù)現(xiàn)有的鋼橋已是日本未來(lái)鋼橋市場(chǎng)中的主要部分,而不再是大跨徑橋梁的建設(shè)占主要。</p><p>  在日

67、本,從第二次世界大戰(zhàn)開(kāi)始就修建許多橋梁來(lái)建立一個(gè)高效的高速公路網(wǎng)。然而,注意力主要集中在橋梁在相同設(shè)計(jì)荷載作用下要近可能的修建安全、標(biāo)準(zhǔn)的橋梁。近來(lái),政府不再考慮橋梁和他們周?chē)h(huán)境之間的和諧。</p><p>  例如,由于高層建筑和高架公路橋,要想對(duì)大阪城堡的美麗和歷史作用有一個(gè)清楚和通暢的認(rèn)識(shí)是很困難的。而這就是高架橋?qū)λ麄冎車(chē)h(huán)境產(chǎn)生不利影響的一個(gè)例子。</p><p>  1.2

68、 最近主要的工作</p><p><b> ?。?)新橋建筑</b></p><p>  在新建工程區(qū)段,鋼橋產(chǎn)業(yè)和混凝土橋產(chǎn)業(yè)之間存在著嚴(yán)重的競(jìng)爭(zhēng)。這是因?yàn)檎紦?jù)著鋼橋產(chǎn)業(yè)的大跨徑橋和大橋建筑的數(shù)量減少,因而,鋼橋產(chǎn)業(yè)試圖主要在中跨度橋尤其是跨徑在40-80m橋建設(shè)中贏取市場(chǎng),結(jié)果 ,許多經(jīng)濟(jì)、合理和中跨度的新結(jié)構(gòu)橋在鋼橋產(chǎn)業(yè)和混凝土橋產(chǎn)業(yè)中都得到了發(fā)展。以下新型鋼橋

69、在尋求擴(kuò)大市場(chǎng)中得到了發(fā)展,也包括了那些中跨度的橋:</p><p>  ——為降低成本使用了少量加強(qiáng)筋和較少焊縫的用厚鋼板制成的板梁橋</p><p>  ——用PC板的雙板式梁橋</p><p>  ——連續(xù)、組合和雙板式梁橋</p><p>  ——用懸索來(lái)增加經(jīng)濟(jì)跨度的連續(xù)組合箱梁橋</p><p>  ——H

70、型鋼主梁的懸索靜定橋</p><p>  ——在內(nèi)部支撐附近存在箱梁的鋼橋和在其它部位存在板梁的鋼橋</p><p>  另一方面,為了面對(duì)鋼橋產(chǎn)業(yè)面臨的競(jìng)爭(zhēng),PC橋隨之產(chǎn)生的新的類型也得到了發(fā)展:</p><p>  ——波紋鋼網(wǎng)的PC箱梁橋</p><p>  ——有鋼構(gòu)件和PC翼緣的組合行架橋</p><p> 

71、 ——波紋鋼網(wǎng)的懸索靜定PC箱梁橋</p><p>  (2)鋼橋產(chǎn)業(yè)的其他發(fā)展</p><p> ?。╥)下列橋梁構(gòu)件類型中,用于抵抗疲勞破壞和斷裂的維修和加固工作</p><p>  ——次要鋼橋構(gòu)件的疲勞破壞</p><p>  ——RC平板的疲勞破壞</p><p>  ——鋼板的疲勞破壞(許多斷裂沿著橋面板和

72、彎梁的焊接處開(kāi)裂)</p><p>  ——鋼橋墩中在柱構(gòu)件的翼緣板和水平構(gòu)件的翼緣板之間的焊縫處有許多裂縫</p><p>  現(xiàn)在這些裂縫的維修和加固工作已經(jīng)開(kāi)始:</p><p> ?。╥i)為了增加設(shè)計(jì)使用荷載的改型工作</p><p>  ——最大的設(shè)計(jì)使用荷載從200KN變?yōu)榱?50KN</p><p> 

73、?。╥ii)為了修改設(shè)計(jì)類型的改型工作</p><p>  ——例如,在大約40年前,在日本公路橋規(guī)范中沒(méi)有用剛性板的設(shè)計(jì)方法</p><p> ?。╥v)地震改型工作</p><p> ?。╲)依靠生命周期費(fèi)用和財(cái)產(chǎn)管理的橋梁管理系統(tǒng)的發(fā)展</p><p> ?。╲i)對(duì)橋梁受力構(gòu)件和伸縮接縫破壞處的維修和加固工作</p>&

74、lt;p><b>  1.3 維護(hù)</b></p><p>  關(guān)于橋梁維護(hù),許多問(wèn)題可以在橋梁工程學(xué)領(lǐng)域解決,盡管也有許多不能單靠橋梁工程來(lái)解決的政治和經(jīng)濟(jì)問(wèn)題。</p><p>  下面列出的是有關(guān)橋梁維護(hù)的爭(zhēng)議和問(wèn)題:</p><p> ?。?)生命周期和術(shù)語(yǔ)的定義</p><p><b>  ——

75、橋梁維護(hù)的定義</b></p><p>  ——在橋梁維護(hù)中術(shù)語(yǔ)的統(tǒng)一</p><p>  ——橋梁構(gòu)件和其他部位生命周期的決定因素</p><p><b>  檢查和檢測(cè)</b></p><p>  ——通過(guò)檢測(cè)橋梁、構(gòu)件和其他部位來(lái)節(jié)約因橋梁維護(hù)檢查而使用的勞力</p><p> 

76、 ——合理化和低成本的檢查方法</p><p>  ——對(duì)維護(hù)工程師進(jìn)行的教育</p><p>  ——通過(guò)運(yùn)用IT技術(shù)來(lái)收集和存儲(chǔ)維護(hù)數(shù)據(jù)</p><p><b>  評(píng)價(jià)/評(píng)估方法</b></p><p>  ——為評(píng)價(jià)現(xiàn)有的橋梁的安全性和耐久性以及將結(jié)果公布和交流而創(chuàng)建的方法 </p><p&g

77、t;  ——決定現(xiàn)有橋梁的改型和維修工作優(yōu)先權(quán)的方法的發(fā)展</p><p>  維護(hù)系統(tǒng)和維護(hù)改型技術(shù)</p><p>  ——橋梁維護(hù)系統(tǒng)的發(fā)展,包括維護(hù)和改型技術(shù)</p><p>  ——從維護(hù)到設(shè)計(jì)有效的反饋系統(tǒng)的發(fā)展</p><p>  ——替換損壞的橋梁結(jié)構(gòu)技術(shù)的發(fā)展</p><p>  ——在維護(hù)方面新材料

78、和技術(shù)的發(fā)展</p><p>  橋梁與周?chē)h(huán)境的和諧</p><p>  ——考慮美學(xué)中共存和和諧的維護(hù)</p><p>  ——為用戶、居民和自然改善和恢復(fù)橋梁周?chē)沫h(huán)境</p><p><b>  維護(hù)預(yù)算</b></p><p>  ——在預(yù)算不足的情況下的維護(hù)</p>&l

79、t;p>  ——財(cái)產(chǎn)評(píng)估和有效預(yù)算</p><p>  1.4 抗震設(shè)計(jì)和改型</p><p>  各種各樣的設(shè)計(jì)方法和改型方法,為抗震設(shè)計(jì)和改型使用的技術(shù)和材料在Hyogo-ken Nambu地震后發(fā)展??拐鹪O(shè)計(jì)程序在Hyogo-ken Nambu地震后又一下突破:</p><p><b>  抗震荷載設(shè)計(jì)</b></p&g

80、t;<p>  在日本公路橋設(shè)計(jì)規(guī)范中抗震設(shè)計(jì)類型有兩個(gè)等級(jí)和兩種類型</p><p>  ——第1級(jí):最大彈性反應(yīng)加速度300加侖</p><p>  ——第2級(jí)類型I:(海洋板材滑動(dòng)類型)最大彈性反應(yīng)加速度1000加侖</p><p>  ——第2級(jí)類型II:(內(nèi)陸斷層滑動(dòng)類型)最大彈性反應(yīng)加速度2000加侖</p><p>

81、;  抵抗第1級(jí)地震用彈性設(shè)計(jì)使用的安全系數(shù)為1.13</p><p>  在抵抗第2級(jí)地震時(shí)彈塑性變形是允許的</p><p>  ——根據(jù)第1級(jí)地震確定的橋梁安全系數(shù)在第2級(jí)地震中得到證實(shí)</p><p>  抵抗第2級(jí)地震的抗震設(shè)計(jì)方法的兩種類型</p><p>  ——設(shè)計(jì)方法A:在這一方法中,地震荷載通過(guò)考慮主要結(jié)構(gòu)構(gòu)件的彈塑性變形

82、而減少</p><p>  ——設(shè)計(jì)方法B:在這一方法中,地震荷載通過(guò)引入地震減震器、保險(xiǎn)絲裝置、關(guān)鍵彈性構(gòu)件、支撐構(gòu)件等等而減少</p><p><b>  1.5 設(shè)計(jì)工具</b></p><p><b>  (1) 分析方法</b></p><p>  在日本幾乎所有用于彈性線性分析的計(jì)算機(jī)

83、程序的發(fā)展都與橋梁設(shè)計(jì)有關(guān)。對(duì)JSHB不能夠使用調(diào)查結(jié)果中,對(duì)框架結(jié)構(gòu)的彈塑性分析和有限位移分析方法有時(shí)得到應(yīng)用。例如,通過(guò)我們實(shí)驗(yàn)室和技術(shù)科學(xué)聯(lián)合會(huì)開(kāi)發(fā)的EPASS計(jì)算機(jī)程序。然而,對(duì)板式結(jié)構(gòu)的相關(guān)分析也已通過(guò)使用主要在其他國(guó)家發(fā)展的計(jì)算機(jī)系統(tǒng)得到了發(fā)展,像ABAQUS, MARC, NASTRAN等等,還有我們的USSP。</p><p>  對(duì)抵抗第2級(jí)地震的鋼橋墩的動(dòng)態(tài)、彈塑性和有限位移分析也已經(jīng)開(kāi)始進(jìn)行

84、。這一過(guò)程使用了日本根據(jù)橫截面受力(而不是應(yīng)力)開(kāi)發(fā)的計(jì)算機(jī)程序。</p><p>  就組成構(gòu)件剛性板的扣環(huán)連接和組合結(jié)構(gòu)的箱型混凝土的彈塑性性能而論,我們的實(shí)驗(yàn)室和技術(shù)科學(xué)聯(lián)合會(huì)開(kāi)發(fā)了EPASS/USSP計(jì)算機(jī)系統(tǒng),這是一種為解決包括薄壁鋼和組合結(jié)構(gòu)空間橋的多功能靜態(tài)/動(dòng)態(tài)彈塑性和有限位移的方法。</p><p><b> ?。?)實(shí)驗(yàn)方法</b></p&g

85、t;<p>  在Hyogo-ken Nambu地震后,假設(shè)動(dòng)態(tài)測(cè)試在日本變得非常普遍。京都大學(xué)和大阪學(xué)院業(yè)開(kāi)發(fā)了一個(gè)多元的假設(shè)動(dòng)態(tài)測(cè)試系統(tǒng),可以模仿一個(gè)多元結(jié)構(gòu)的動(dòng)態(tài)特性,這使得許多不同的實(shí)驗(yàn)室通過(guò)互聯(lián)網(wǎng)進(jìn)行合作。</p><p><b>  1.6新材料和技術(shù)</b></p><p>  橋梁的新的高性能材料不斷得到了發(fā)展,例如包括高性能鋼、高性能支

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論