版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 中文6000字,4000單詞,22600英文字符</p><p> 出處:Deshpande R P, Chinnan M S, Phillips R D. Process development of a chocolate‐flavoured peanut–soy beverage[J]. International journal of food science & tech
2、nology, 2008, 43(5): 886-894.</p><p> 本科畢業(yè)設計(論文)</p><p> 外文參考文獻譯文及原文</p><p> 學 院 輕工化工學院 </p><p> 專 業(yè) 食品科學與工程 </p><p><b
3、> 目錄</b></p><p> 1. 外文文獻譯文1</p><p><b> 1.1 前言1</b></p><p> 1.2 原料和方法2</p><p> 1.2.1 原料2</p><p> 1.2.2 飲料制備2</p><
4、p> 1.2.3 物化和營養(yǎng)測試3</p><p> 1.2.4 蛋白質回收百分比3</p><p> 1.2.5 賴氨酸含量的上下限3</p><p> 1.2.6 產品制備試驗3</p><p> 1.2.7 產品設計4</p><p> 1.3 結果和討論4</p>&
5、lt;p> 1.3.1 新型飲料產品的研制4</p><p> 1.3.2 設計方法上下限的確定6</p><p><b> 1.4 結論8</b></p><p><b> 1.5 鳴謝8</b></p><p><b> 1. 外文文獻譯文</b>&
6、lt;/p><p> 巧克力味花生大豆飲料的研制</p><p> 摘要: 利用兩種富含蛋白的含油種子資源即花生和大豆開發(fā)一種新型飲料產品。中度烘烤的花生粉和巧克力粉配合使用以產生怡人風味。相對于純花生產品,花生和大豆的組合提高必需氨基酸含量,尤其是賴氨酸。試驗工廠規(guī)模的飲料生產草案包括重要操作步驟過濾、均質和巴氏滅菌法。飲料制備包括一個三因素限制混合設計。在賴氨酸的含量、粘度和可視穩(wěn)定指
7、數(shù)能分別達到51mg/g蛋白質、36.9mPa·s和1.00的基礎上,其限制因素的上限和下限確定為:花生(30.6-58.7%)、大豆(28.3-43.5%)以及巧克力糖漿(13.0-25.9%)。改進的飲料配方和加工草案是對新型巧克力味花生大豆飲料的消費者認可度做進一步研究的基礎。</p><p> 關鍵詞:飲料加工草案,巧克力味花生大豆飲料,巧克力糖漿,賴氨酸含量,大豆,花生,三組分混合設計,粘度
8、,可視化穩(wěn)定指數(shù)</p><p><b> 1.1 前言</b></p><p> 開發(fā)一系列的傳統(tǒng)花生產品的趨勢目前越發(fā)明顯,最近,采用花生生產蛋白飲料產品成為焦點。對蔬菜調和乳、巧克力味花生飲料,UHT滅菌花生飲料和部分脫脂烤花生飲料的調查研究顯示花生奶已經成為奶類產品中的熱門。</p><p> 蛋白質的飲食不足尤其在發(fā)展中國家,是
9、促進食品科學家和營養(yǎng)師研制營養(yǎng)均衡蛋白食品的因素之一?;ㄉ鞍椎臓I養(yǎng)價值在于它的蛋白質含量、必需氨基酸組成以及蛋白質消化率?;ㄉ鞍兹狈δ承┍匦璋被崛缳嚢彼?、色氨酸、蘇氨酸和含硫氨基酸,但它的消化率卻與動物蛋白相當。當植物蛋白作為食物被攝入時,需要引起重視的是從營養(yǎng)角度,谷物和豆類的混合組合設計可彌補必需氨基酸間的不平衡。飲食被認為是加強營養(yǎng)以滿足已知的必需營養(yǎng)物質的缺乏的最佳途徑,而其中豆制品所占比例越來越高。這種配方通常在兒童及特
10、殊人群的飲料中作為全面營養(yǎng)補充劑。此外,還能為傳統(tǒng)食品提供別樣的選擇,大豆蛋白正與很多膳食替代飲料融為一體,從而為忙碌的消費者帶來便利。大豆是含所有9中必需氨基酸且其含量能滿足人類需求的唯一豆科植物,被歸類到與肉類、牛奶、魚和雞蛋同等的優(yōu)質蛋白資源。大豆原料具有不同的營養(yǎng)和功能屬性,從而促使研發(fā)者去開發(fā)高蛋白食品,推動生產者優(yōu)化產品的營養(yǎng)、性能和成本。</p><p> 雖然大豆蛋白在飲料中的應用日趨成熟,但仍
11、無法應用于澄清液態(tài)產品中(由于長鏈蛋白分子引起懸浮顆粒),還有大豆蛋白會產生豆腥味,這也是很少消費者能接受的一個重要原因。目前,隨著大豆原料和各種風味的復合試驗不斷增加,消費者對大豆蛋白飲料的熱情不斷高漲。風味掩蓋是抵消單一蛋白資源或復合蛋白產品的苦味、青澀味、豆腥味以及其它不宜味道最好的工具。巧克力已被證明是大豆飲料的流行風味,這源于它能產生順滑和怡人的香氣。Wang等人觀察到巧克力味在提高感官質量方面能產生最佳效果。</p&g
12、t;<p> 為順應目前便利營養(yǎng)的消費觀念趨勢進行了對新型巧克力風味的花生大豆飲料的研究。目的是利用三種主要原料花生、大豆和巧克力開發(fā)一種富含蛋白的飲料,旨在獲取烤花生粉、大豆(大豆粉和單一大豆蛋白)和巧克力的營養(yǎng)和功能性優(yōu)勢。</p><p><b> 1.2 原料和方法</b></p><p><b> 1.2.1 原料</b&
13、gt;</p><p> 中度烘烤部分脫脂(含12%脂肪)花生粉、分離大豆蛋白、脫脂大豆粉、麥芽糖糊精、卵磷脂、人造巧克力粉、卡拉膠穩(wěn)定劑、市售巧克力奶、玉米糖漿</p><p> 香草精、可可粉、蔗糖、花生油和鹽</p><p> 1.2.2 飲料制備</p><p> A. 基本原料漿的制備</p><p>
14、; 中度烘烤部分脫脂花生粉、脫脂大豆粉和分離大豆蛋白在膠體磨中研磨細。稱250g磨粉用2400g自來水混合后在實驗室均質機中均質(兩個階段,每個階段34474 ± 100 kPa,室溫)。均質料液經從PVC管道和聚酯材料中焊接的273目濾網(wǎng)分離過濾。除去濾網(wǎng)上的濾渣,收集濾液作為基本原料漿液。</p><p> B. 巧克力糖漿的制備</p><p> 各種原料如水、蔗糖、
15、玉米糖漿、麥芽糖糊精、可可粉、花生油、香草精、鹽、大豆卵磷脂、人造巧克力粉和穩(wěn)定劑以適當?shù)臄?shù)量混合,混合物在蒸汽鍋中被加熱到75℃,同時用手持攪拌器不斷攪拌,在灌裝前冷卻到室溫。</p><p><b> C. 飲料的加工</b></p><p> 飲料的最后加工是由花生懸浮液、大豆懸浮液和巧克力糖漿按照已確定比例混合而成?;旌衔镌谡羝佒屑訜岬?5℃,同時用手持
16、攪拌器不斷攪拌。然后在實驗室均質機中均質(兩個階段,每個階段34474 ± 100 kPa,室溫)、經高熱滅菌(93℃ 1s)后通過熱交換器迅速冷卻到35℃左右。最后將飲料倒入無菌、250mL的瓶子在4℃下儲存一個星期。</p><p> 1.2.3 物化和營養(yǎng)測試</p><p> 試驗工廠規(guī)模加工項目生產的不同飲料樣品在經過18小時和1個星期的儲存后需要檢驗兩個重要的物化
17、性質——粘度和可視穩(wěn)定指數(shù)(VSI)。粘度可用帶有小型樣品轉換器的布氏粘度計來測定。VSI是通過分離后收集在250mL的瓶中飲料的總高度與沉淀物的高度之比。飲料的營養(yǎng)屬性是以最終飲料成品中賴氨酸的含量(毫克/克蛋白質)為基準。賴氨酸的含量是以花生粉、SF和SPI的組成以及其在原料液中的大概百分比來估算的。</p><p> 1.2.4 蛋白質回收百分比 原料液(經過濾的蛋白質懸浮液)中蛋白質的回收百分比
18、是以作為原始材料的面粉量、水添加量和過濾得到的濾渣平均干重為基準計算得到的。</p><p> 花生、SF、SPI各自的蛋白質回收值用于估算不同試驗組合的花生大豆懸浮液中蛋白質和賴氨酸的含量。</p><p> 1.2.5 賴氨酸含量的上下限</p><p> 賴氨酸含量的參考值是出自從食品營養(yǎng)董事會或醫(yī)藥學會在2002年氨基酸評分報告。相應地對于未滿1周歲的
19、嬰兒和老年人不同氨基酸的需求量(mg/g蛋白質)如下:組氨酸18、異亮氨酸25、亮氨酸55、賴氨酸51、蛋氨酸加半胱氨酸25、苯丙氨酸與酪氨酸47、蘇氨酸27、色氨酸7、纈氨酸32。以賴氨酸含量參考值52mg/g為前提,其上下限確定為58.7mg/g和43.4mg/g。用不同量的已知蛋白質及賴氨酸含量的大豆花生漿以獲得最終產品所需賴氨酸水平。由花生大豆懸浮液的各種組合的結果發(fā)現(xiàn):1350g花生漿和650g大豆粉漿的混合物含57mg賴氨酸
20、每克蛋白質(接近上限);1175g花生漿和825g大豆粉漿的混合物含57mg賴氨酸每克蛋白質(接近下限)。根據(jù)這些數(shù)據(jù)得出結論:花生添加量上下限為1175g和1350g;大豆為650g至825g(表2)。 </p><p> 1.2.6 產品制備試驗</p><p> 利用流程圖1 a~c中飲料制備方案進行初級飲料制備試驗。分別在高花生量(1350g)低大豆量(650g)和低花生量(1
21、175g)高大豆量(825g)的試驗組合中添加不同量的巧克力糖漿(300g、500g、700g),并分析檢驗這些初級產品的粘度和可視化穩(wěn)定指數(shù)。市售巧克力奶的粘度(36.9mPa·s)和市售牛奶的可視化穩(wěn)定指數(shù)(1.00)是取得飲料中巧克力糖漿的最大添加量700g和最小添加量300g的前提條件。由此正交試驗得出各物質的上下限分別為:花生(30.6~58.7%);大豆(28.3~43.5%的大豆粉或分離大豆蛋白);巧克力糖漿(1
22、3.0~25.9%)。</p><p> 1.2.7 產品設計</p><p> 采用花生(30.6~58.7%);大豆(28.3~43.5%的大豆粉或分離大豆蛋白);巧克力糖漿(13.0~25.9%)作為三因素作正交設計。原料組分添加量范圍是根據(jù)賴氨酸含量(51.0mg/g蛋白質)、粘度和(36.9mPa·s)和可視化穩(wěn)定指數(shù)(1.00)而定的。6個正交設計組(3個和13.
23、0%;3個25.9%巧克力糖漿)用于做飲料制備試驗(表3),采用這些混合設計和飲料生產方案制備12種飲料。(6個用大豆粉漿為大豆資源;6個用大豆分離蛋白為大豆源),并對以上所有的產品分析其粘度和可視化穩(wěn)定指數(shù)。</p><p><b> 1.3 結果和討論</b></p><p> 1.3.1 新型飲料產品的研制</p><p><b
24、> A. 生產參數(shù)</b></p><p> 本次研究中開發(fā)的巧克力味花生大豆飲料的最終試驗工廠規(guī)模方案如圖3。我們的實驗室關于花生飲料制品的早期工作為巧克力味花生大豆飲料的研制提提供指導作用。穩(wěn)定劑的選擇(卡拉膠)、研磨和均質操作的選擇部分是根據(jù)部分回收和穩(wěn)定性研究為基礎。不同的處理方法:(1)研磨和過濾(2)均質和過濾(3)研磨、均質和過濾,結果表明第三種方法能產生最順滑細膩的口感。此觀
25、察結果與Mustaka在濃縮優(yōu)質蛋白飲料的研究中的發(fā)現(xiàn)相一致,提出了高壓均質(55158KPa)相對于低壓均質(24132KPa),能減小顆粒大小并生產出更佳口感的飲料。而未采用膠體磨和均質機時則產生口感不佳、高粘度和一些沉淀?;ㄉ?、大豆粉、大豆分離蛋白粉在膠體磨中研磨,加水均質,料漿經過濾后得到花生、大豆粉和大豆分離蛋白的基料。在板式換熱器中可預先形成巴氏滅菌法以延長飲料的貨架期,并且使產品在運行時能瞬間冷卻,從而提高最終產品的穩(wěn)定
26、性和稠度。同時Wang 等人觀察到健康意識強的消費者更青睞新鮮食物;經過溫和熱處理的豆奶要比強烈熱處理的豆奶更佳符合消費者。從各種溫度-時間組合結果表明93℃和1s為最佳。因為產品已經添加原材料(甜味劑、可可粉和</p><p> B. 主要原料的選擇:</p><p> 各種牛奶飲料是從含油種子如花生或大豆的水提物制備得到的,這些含油種子通常含油基礎原料,除了糖、乳化劑、穩(wěn)定劑。添加
27、劑和風味物質的添加是為了提高產品的穩(wěn)定性和認可度。除了異味,澀味或后苦味是造成豆奶可接受程度低的另一個因素,且可以解釋美國很多市售豆奶都是添加一些輔助原料如可可粉、香草提取物、麥芽提取物、海藻提取物、β-胡蘿卜素和膠體以提高風味。</p><p> Wang等人的感官分析顯示巧克力和杏仁風味物質能促進豆奶芳香味,添加膠體能部分掩蓋豆腥味。Chompreeda等人的感官評價和響應面分析方法研究表明巧克力味花生大豆
28、飲料的最佳配方為3.5%大豆分離蛋白、3.5%黃油、8%糖、可可粉0.7%、穩(wěn)定劑0.1%以及根據(jù)個人喜愛在可接受范圍內添加一定量的水。Hinds等人開發(fā)的低脂花生風味飲料是一種具有潛力的牛奶替代品,含11.8%總固形物、2%脂肪和3.7%蛋白質,呈橙黃色。Osborn等人開發(fā)的巧克力營養(yǎng)飲料含多種原料如花生糖漿、蔗糖、麥芽糊精、大豆卵磷脂、可可粉和其他水溶物。</p><p> 據(jù)我們所知,飲料中花生和大豆的
29、組合還未曾被報道過。此外,大豆蛋白有產生豆腥味的主要問題。Wang小組成員更喜歡風味豆奶較純豆奶,并且他們最喜歡巧克力豆奶甚于其他風味豆奶。另外巧克力味能掩蓋豆腥味和產生順滑口感。在液態(tài)奶中當以巧克力作為原料時,穩(wěn)定性是重要的影響因素。在合適穩(wěn)定劑存在條件下,由蛋白質和被蛋白質覆蓋的可可所形成的網(wǎng)狀結構很穩(wěn)定,從而在一定范圍內有效地減少沉淀和分離。少量(0.25%)卡拉膠與蛋白質的高度反應導致懸浮液中三維網(wǎng)狀結構的形成。這使得卡拉膠尤其
30、有價值,同時也是為什么在多數(shù)風味的冷凍乳制品和豆制品中都有K型卡拉膠的原因,與其他影響粘度的凝膠配合使用可加強卡拉膠的效果。</p><p> 需要強調的是,在最終確定飲料加工的操作條件后,進行各種實驗工廠規(guī)模的飲料制備試驗以確定合適的原料比例。這些試驗的主要原料是根據(jù)他們各自的功能優(yōu)勢。</p><p> 粘度和可視化穩(wěn)定指數(shù)測定在決定穩(wěn)定劑、乳化劑、油、甜味劑和風味物質的用量起著重
31、要作用。然而,花生、大豆和所有其它成分的比例是相互關聯(lián)的,需要用正交試驗來確定。因此飲料原料被分為花生、大豆、和巧克力糖漿三大主要組分。根據(jù)飲料的物化性質對飲料的制備做進一步的混合設計試驗從而確定這三大組分的可接受范圍。</p><p> 1.3.2 設計方法上下限的確定</p><p> 從飲料制備試驗表3可看出少量的巧克力糖漿將引起飲料輕微的顆粒懸浮。換句話說,跟控制樣品相比高濃度
32、的巧克力糖漿將會成品很稠密,因此巧克力糖漿對風味和功能有重要影響。然而,也可能是其它具有此作用的某種組分如蔗糖、花生糖漿、麥芽糊精、大豆分離蛋白或穩(wěn)定劑。因熱處理過程中發(fā)揮重要作用的蛋白質不斷濃縮,花生和大豆的比例高會導致產品更加濃稠。在Rubico等人關于花生飲料研究表明。粘度取決于組成、均質壓力和溫度。溫度對粘度影響顯著可能是由于溫度會引起蛋白質和碳水化合物結構的變化。與Ruatom等人的發(fā)現(xiàn)相一致的是,引起巧克力味花生飲料凝膠的一
33、個可能原因是花生蛋白質與增稠劑(卡拉膠)的相互作用導致分子聚合從而使粘度增大。如Hinds等人觀察,花生飲料的穩(wěn)定性。粘度和口感特征取決于穩(wěn)定劑的類型和添加量、加熱和冷卻速率、蛋白質脂肪含量及顆粒大小。</p><p> 因此,所有關鍵因素的合理范圍將直接關系到一個可接受飲料產品的效益。限制因素的選擇很關鍵,因為個別因素的制約將影響到整個設計。在探索過程中限制的條件并沒有設定得很準確,而是試驗性地大概設定。因此
34、三大主要成分(花生、大豆和巧克力糖漿)的上下限是根據(jù)三大因素——賴氨酸含量、粘度和可視化穩(wěn)定指數(shù)而定。</p><p><b> A. 賴氨酸含量</b></p><p> 由于花生缺乏賴氨酸而大豆是一種很好的賴氨酸補充源。該必需氨基酸是構成營養(yǎng)優(yōu)質飲料的大豆和花生最佳組合范圍的基礎。實驗飲料的配方中每1mg蛋白質所含賴氨酸量是根據(jù)蛋白質回收值和原材料組成估算得到
35、的。</p><p> 花生蛋白產品的必需氨基酸組成表明花生仁、面粉、濃縮蛋白和分離蛋白的賴氨酸含量分別為35、40、29和30,沒達到世界糧農組織公布的55。另一個由Ang等人做的研究表明在雞蛋、牛奶、人奶、豆奶、脫脂豆奶粉中賴氨酸分別是70、76、87、76和72。從Rubico等人開發(fā)的花生飲料的氨基酸概況,可觀察到花生原料提取物的賴氨酸含量達43.1(毫克/1克蛋白)。71℃均質花生奶是51.6。在較高
36、的溫度時間條件(85℃、100℃和121℃保持15min,121℃下3秒)121控制下的樣品降低到28.8-38.1。熱處理會影響一些氨基酸,然而真正引起賴氨酸含量明顯變化的從目前的生化數(shù)據(jù)中并未得知。</p><p> 這些文獻中賴氨酸含量值表明在本研究的估算值在預期范圍內并接近賴氨酸參考含量。這估計只是推導出最大設計限制的的營養(yǎng)基礎。飲料中的實際賴氨酸含量隨過程中熱處理、結構變化和其它物化變化而變化。賴氨酸
37、的估計是假設在飲料生產中沒有任何損失或蛋白質分子變化成立的。然而對飲料的營養(yǎng)概況的進一步研究將實驗中的估計值有效。</p><p> B. 粘度和可視穩(wěn)定指數(shù)</p><p> 結果表明:可視穩(wěn)定指數(shù)分別介于0.87-0.99、17.7-131.8mPa·s,可以觀察到添加卡拉膠后VSI值增大。與Hinds等制備的花生飲料的VSI值相比,添加后其VSI值很接近牛奶(VSI=1
38、.00)。表3顯示正在研制的新產品的VSI值與牛奶相似,并且其粘度值與那些市售巧克力奶相當。賴氨酸含量的估計范圍在44.1-57.1mg/g蛋白質,這要求實驗配方粘度和VSI值分別要達到為17.7-131.8 mPa s 和 0.63-0.99。</p><p> 確定三大主要組分混合設計的上下限的目的在于盡可能取得混合配方的范圍,以研究新產品的認可度。</p><p> 實驗廠開發(fā)的
39、規(guī)模在這項研究中有助于在沒有制備方法條件下獲得不同飲料的配方。巧克力風味花生豆奶飲料由于組合了花生蛋白和優(yōu)質大豆蛋白和巧克力香精,預計能提高營養(yǎng)和感官質量。對巧克力味花生大豆飲料的消費者認可度和營養(yǎng)特性的進一步研究將有助于確保本實驗中新產品開發(fā)的成功。因此本實驗的后期工作將主導新開發(fā)產品的感官評價以及研究它的產品認可度。</p><p><b> 1.4 結論</b></p>
40、<p> 巧克力味花生大豆飲料是利用兩種含油種子蛋白資源花生和大豆開發(fā)制備的。選定主要原料、配方和加工參數(shù)以制定一個試點工廠的規(guī)模飲料加工方案,這有助于對飲料感官質量的進一步研究。賴氨酸含量大概在44.1-57.1mg/g蛋白質。實驗配方的粘度是在17.7–131.8 mPa ·s。實驗配方的VSI值在0.63-0.99之間,跟市售牛奶的VSI值1.0相接近。賴氨酸含量的范圍,粘度、VSI值這三個制約因素做三因素
41、混合設計?;旌显O計的三大主要組分是花生、大豆和巧克力糖漿。其上下限分別為58.70%,28.26-43.52%和13.04-25.93%。</p><p><b> 1.5 鳴謝</b></p><p> 本研究是在美國國際開發(fā)署、聯(lián)合國國際開發(fā)署、花生協(xié)作研究志愿計劃下完成的。非常感謝美國佐治大學食品科學與技術系Georgia, Griffin的技術協(xié)助、指導和
42、寶貴的貢獻。</p><p><b> 2.外文文獻原文</b></p><p> International Journal of Food Science and Technology 2008, 886 43, 886–894 </p><p> Original article</p><p> Proc
43、ess development of a chocolate-flavoured peanut–soy beverage</p><p> Rashmi P. Deshpande, Manjeet S. Chinnan* & Robert D. Phillips</p><p> Department of Food Science and Technology, Univer
44、sity of Georgia, 1109 Experiment Street, Melton Building, Grif?n, GA 30223-1797, USA</p><p> (Received 20 September 2005; Accepted in revised form 15 December 2006)</p><p> Summary A new beve
45、rage product was developed utilising two protein-rich oilseed sources, namely peanut and soy. Medium-roasted peanut ?our and chocolate ?avour were incorporated to o?er pleasant ?avour pro?le. The peanut–soy combination w
46、ould also improve essential amino acid pro?le , especially that of lysine, compared with an all-peanut product. A pilot-plant scale beverage-processing protocol involved ?ltration, homoge- nisation and pasteurisation as
47、 the major operating steps. Beverage form</p><p> Keywords Beverage-processing protocol, chocolate-?avoured peanut–soy beverage, chocolate syrup, lysine content, peanut, soy, three- component co
48、nstrained mixture design, viscosity, visual stability index</p><p> Introduction</p><p> There is a growing interest in developing a range of traditional peanut-based products. Recently, focu
49、s has been towards expanding the utilisation of peanuts through protein-based beverage products. Earlier studies on Miltone vegetable toned milk , peanut beverage, chocolate-?avoured peanut beverage, Ultra-High-Tempe
50、rature (UHT)-sterilised peanut beverage, and partially defatted, roasted peanut beverage show that peanut has been explored in several milk-type products with continual advance</p><p> Dietary de?ciency of
51、 protein, especially in developing countries, is one of the factors compelling food scientists and nutritionists to undertake the development of nutritionally balanced protein-based foods. The nutritive value of peanut
52、protein is a function of its protein content, amino acid composition, and protein digestibility. Peanut protein is de?cient incertain essential amino acids, such as lysine, tryptophan, threonine and sulfur-contain
53、ing amino acids, but its true digestibil</p><p> Although advances are being made in the utilisation of soy proteins in beverages, they cannot be used in a clear liquid-based product (because of suspended
54、particles resulting from long-chain protein molecules) and they also impart beany ?avour, a major cause of low consumer acceptability. Currently, consumer enthusiasm for soy protein-based beverages is growing as atte
55、mpts to combine ?avours and ingredients are on the rise. Flavour masking is the best tool that has been developed to compen</p><p> This study to develop a new chocolate-?avoured, peanut–soy beverage was un
56、dertaken keeping the current consumer trend of convenience and nutrition in mind. The objective was to develop a protein-rich beverage utilising three major ingredients, peanut, soy and chocolate. The idea was to gain
57、nutritional and functional bene?ts of roasted peanut ?our, soy (either ?our or protein isolate) and chocolate. The new bever- age developed is expected to have improved nutritional and sensory attributes</p>&l
58、t;p> Materials and methods</p><p><b> Materials</b></p><p> Medium roast, partially defatted (12% fat) peanut ?our was obtained from Golden Peanut Company, Alpha- retta, GA, US
59、A. Soy protein isolate (SPI) and defatted soy ?our (SF) were obtained from Cargill Soy Protein Solutions, Sidney, OH and Cedar Rapids, IA, USA, respectively. Maltodextrin was donated by AVEBE America Inc.,
60、 Princeton, NJ, USA. Soy lecithin was provided by Riceland Foods, Inc., Lecithin Division, Stuttgart, AR, USA. Arti?cial chocolate ?avour was supplied by</p><p> Beverage preparation</p>&
61、lt;p> Preparation of base stocks</p><p> Medium-roast partially defatted peanut ?our, defatted SF and SPI were ?nely ground in a Morehouse mill.The ground ?ours (250 g) were mixed with tap w
62、ater (2400 g) and homogenised (two stages,34474 ± 100 kPa at each stage, room temperature, ?ve passes) in a laboratory homogeniser . The homogenised slurries were ?ltered separately through a 273-mesh (53 lm) ?
63、lter screen fabricated from PVC pipe and polyester mesh material . The residues collected on the ?lter screen were discar</p><p> Preparation of chocolate syrup</p><p> Various ingredients,
64、 such as water, sucrose, corn syrup, maltodextrin, cocoa powder, peanut oil, vanilla extract, salt,soy lecithin, arti?cial chocolate ?avour and stabiliser (Fig. 2) were mixed in appropriate quantities. (The exact prop
65、ortions of the ingredients have not been disclosed as the product being developed is an invention under review by The University of Georgia Research Foundation, Inc., Athens, GA, USA.) The mixture was heated to 75℃ in a
66、steam kettle, while mixing continuously </p><p> Processing of beverage</p><p> The ?nal beverage formulations were prepared using the base stocks of peanut slurry, soy slurry (either SF
67、or SPI) and chocolate syrup (Fig. 2) mixed in predeter- mined proportions (Fig. 3). The mixture was heated to75℃ in a steam kettle, stirring constantly with a hand- heldblender.It was homogenised (two stages,34474
68、 ± 100 kPa at each stage, 72℃, three passes) in a laboratory homogeniser and pasteurised (93℃for1 s). The beverage was then passed through a plate heat exchanger to</p><p> Measurement of physical
69、and nutritional properties</p><p> Di?erent beverage samples prepared using the pilot- plant scale processing protocol were evaluated after being stored for 18 h and for a period of 1 week. Two important
70、physical properties viscosity (g) and visual stability index (VSI) were determined. The viscosity was measured using a Brook?eld Viscometer equipped with small sample adaptor. VSI was measured by taking the ratio of t
71、he total height of the beverage to the height of the sediment collected after separation in a 250-ml bottle .</p><p> Percentage protein recovery</p><p> The percentage protein recovered in
72、 the base stocks(?ltered protein slurries) was calculated based on the amount of ?our used as a starting material, amount of water added and average weight of dry residue collected after ?ltration.</p>&l
73、t;p> The respective protein recovery values of peanut(7.69%), SF (8.19%) and SPI (9.43%) were used to calculate protein and lysine content of the peanut and soy slurries for di?erent experimental formulations.&
74、lt;/p><p> Low- and high-level constraints from lysine content</p><p> The reference value of lysine content was selected from the Food and Nutrition Board Institute of Medicine 2002 summary o
75、f amino acid scoringpattern .Accordingly, the amount of different amino acids required is as follows: histidine 18, isoleucine 25, leucine 55, lysine 51, methionine + cysteine 25, phenylalanine + tyrosin 47, threonin
76、e 27,tryptophan 7 and valine 32. Based on the lysine content of 51 mg g)1 of protein as a reference value, high and low constraints of lysine content</p><p> Beverage preparation trials</p>&l
77、t;p> Using the beverage-processing protocol described in Fig. 1a–c, preliminary beverage formulation trials were conducted. In high-peanut (1350 g) low-soy (650 g) and low-peanut (1175 g) high-soy (825 g) experimenta
78、l com- binations, di?erent levels of chocolate syrup (300, 500 and 700 g) were added. These preliminary formulations were analysed for viscosity and VSI values (data not36.9 mPa·s) and VSI of commercial cow’s milk
79、(1.00)was the basis to obtain 300g as the lower limit 700 g as the highe</p><p> Product design</p><p> A three-factor constrained mixture design was developed using peanut (30.6–58.7%), soy
80、 (28.3–43.5% of SF or SPI) and chocolate syrup (13.0–25.9%). The lower and upper-bound constraints for the primary components were based on the lysine content (51.0 mg g)1 of protein), viscosity (36.9 mPa s) and a VSI of
81、 1.00. Six mixture proportions (three with 13.0% and three with 25.9% of chocolate syrup) were selected for experimental beverage preparation trials (Table 3). Using these mixture proportions an</p><p> Res
82、ults and discussion</p><p> Development of new beverage product</p><p> Processing parameters</p><p> Final pilot-plant scale protocol of the chocolate-flavoured, peanut–soy beve
83、rage being developed in this study is given in Figs 1–3. Earlier work preformed in our laboratory on peanut beverage preparation guided the development process of chocolate-?avoured, peanut–soy beverage. The typeof sta
84、biliser (carrageenan) selected and the choice of milling and homogenisation operations were based on particle recovery and stabiliser evaluation study (Desh- pande et al., 2003). Different treat</p><
85、p> Selection of key ingredients</p><p> Various milk-like beverages have been prepared from aqueous extracts of oilseeds, such as peanuts or soybeans. These oilseeds usually contain the base ingredient,
86、 but sugar, emulsi?ers, stabilisers, additives and ?avours are added to improve the stability and acceptance of the product. Apart from o?-?avour, astringent or bitter aftertaste is another factor contri- buti
87、ng to low acceptability of soymilks and may explain the reason that many commercial soymilks in the United States are </p><p> Sensory analysis by Wang et al. (2001) showed that chocolate and almond ?avouri
88、ngs improved the aroma of soymilks (P < 0.05), and the addition of gum partially masked the beany off-?avour. Sensor evaluation and response surface methodology study done by Chompreeda et al. (1989) indicated that
89、 the optimum formulation of the chocolate-?avoured peanut beverage was obtained by using protein isolate 3.5%, butter fat 3.5%, sugar 8%, cocoa powder 0.7%, stabiliser 0.1%, and water wit</p><
90、p> To our knowledge, a combination of peanut and soy in a beverage has not been previously reported. Also, soy proteins have a major problem of imparting beany ?avour. Wang. et al. (2001) observed that panellists
91、 preferred ?avoured soymilk over plain soymilk, and they liked chocolate ?avour better than other ?avours. Also, chocolate has the ability to mask protein ?avour and provide a smooth pro?le. The important factor while
92、using cocoa powder as an ingredient in liquid products is the s</p><p> Hence, after ?nalising the operating conditions for the beverage-processing, various pilot-plant scale beverage preparation tr
93、ials were performed to derive suitable ingredient proportions (the exact proportions of these ingredients and data related to these trials have not been reported as the product being developed is an invention under
94、 review by The University of Georgia Research Foundation, The key ingredients (Table 4) for the experimental trials were selected based on thei</p><p> Viscosity and visual stability measurements wer
95、e helpful in deciding the amounts of stabiliser, emulsi?er, oil, sweeteners and ?avouring agents. However, it was observed that the proportions of peanut, soy and all other ingredients were interdependent. This observati
96、on led to a mixture design approach for the experimental trials. Therefore, the beverage ingredients were grouped into three major components as peanut, soy and chocolate syrup. Peanut and soy represented the base st
97、ocks and the</p><p> Mixture design approach and determination of high- and low-level constraints</p><p> It was observed from the beverage preparation trials (Table 3) that very low levels o
98、f chocolate syrup resulted in poor suspension of particles in the beverage. On the other hand, very high amounts resulted in very thick formulations as compared with the control (Hershey ’s creamy chocolate milk shake
99、). Thus, chocolate syrup (the liquid blend of various other ingredients prepared as described in Fig. 2) had a functional and a ?avour imparting role. However, it is probably the</p><p> Th
100、erefore, the desirable range of all the key ingredients which can result in an acceptable beverage product was of interest. The choice of constraints is crucial because the constraints on the individual factors in?uen
101、ce the design (Gorman, 1966). Often in exploratory work, the constraints cannot be set precisely and may have to be estimated experimentally (Gorman, 1966). Hence, the lower- and upper-bound constraints of three
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2008年--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制
- 2008年--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制
- 2008年--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制(英文)
- 2008年--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制.doc
- 2008年--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制.DOC
- 2008年--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制(英文).PDF
- 2008年--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制(英文).pdf
- [雙語翻譯]--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制
- [雙語翻譯]--食品科學與工程外文翻譯--巧克力味花生大豆飲料的研制
- 食品科學與工程專業(yè)外文翻譯--酶法提取大豆油的改進
- 食品科學與工程專業(yè)外文翻譯--酶法提取大豆油的改進
- 2008年--食品科學與工程外文翻譯--葉酸設防對檸檬酸奶特性的影響
- 食品科學與工程專業(yè)外文翻譯--酶法提取大豆油的改進(中文)
- 2008年--食品科學與工程外文翻譯--葉酸設防對檸檬酸奶特性的影響
- 食品科學與工程專業(yè)外文翻譯--酶法提取大豆油的改進(英文)
- 2008年--食品科學與工程外文翻譯--葉酸設防對檸檬酸奶特性的影響(譯文)
- 食品科學與工程專業(yè)畢業(yè)論文-年產3000噸花生乳飲料工廠設計
- 食品科學與工程畢業(yè)論文蘋果梨、胡蘿卜復合飲料的研制
- 食品科學與工程專業(yè)畢業(yè)論文-年產3000噸花生乳飲料工廠設計
- 2008年--食品科學與工程外文翻譯--葉酸設防對檸檬酸奶特性的影響(譯文)
評論
0/150
提交評論