版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> The research of digital image processing technique</p><p> 1 Introduction</p><p> Interest in digital image processing methods stems from two principal application ares:improvement
2、of pictorial information for human interpretation;and processing of image data for storage,transmission,and representation for autonomous machine perception.</p><p> 1.1 What Is Digital Image Processing?<
3、;/p><p> An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial(plane) coordinates,and the amplitude of f at any pair of coordinates(x,y) is called the intensity or gray leve
4、l of the image at that point.When x,y,and digital image.The field of digital image processing refers to processing digital images by means of a digital computer.Note that a digital image is composed of a finite number of
5、 elements,each of which has a particular location and value.These elements are r</p><p> Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in
6、 human perception. However, unlike human who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate
7、on images generated by sources that human are not accustomed to associating with image. These include ultrasound, electron microscopy, and computer-generated image</p><p> There is no general agreement amon
8、g authors regarding where image processing stops and other related areas, such as image analysis and computer vision, start.Sometimes a distinction is made by defining image processing as a discipline in which both the i
9、nput and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computing the average intensity of an image (which
10、yields a single number)wou</p><p> There no clear-cut boundaries in the continuum from image processing at one end to computer vision at the other. However , one useful paradigm is to consider three types o
11、f computerized processes is this continuum: low-, mid-, and high-ever processes. Low-level processes involve primitive operation such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A
12、low-level process is characterized by the fact that both its input and output are images.Mid-level processing</p><p> Based on the preceding comments, we see that a logical place of overlap between image pr
13、ocessing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and,
14、 in addition,encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts,consider t</p><p> 1.2 T
15、he Origins of Digital Image Processing</p><p> One of the first applications of digital images was in the newspaper industry, when pictures were first sent by submarine cable between London and New York.Int
16、roduction of the Bartlane cable picture transmission system in the early 1920s reduced the time required to transport a picture across the Atlantic from more than a week to less than three hours. Specialized printing equ
17、ipment coded pictures for cable transmission and then reconstructed them at the receiving end. Figure 1.1 was transmitted</p><p> Some of the initial problems in improving the visual quality of these early
18、digital pictures were related to the selection of printing procedures and the distribution of intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward the end of 1921 in favor of a technique bas
19、ed on photographic reproduction made from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an images obtained using this method. The improvements over Fig. 1.1 are evident, both in t</p><
20、p> The early Bartlane systems were capable of coding images in five distinct level of gray.This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the images that could be obtained using the 15-t
21、one equipment. During this period,introduction of a system for developing a film plate via light beams that were modulated by the coded picture tape improved the reproduction process considerably.Although the examples ju
22、st cited involve digital images, they are not considered digital im</p><p> The idea of a computer goes back to the invention of the abacus in Asia Minor,more than 5000 years ago. More recently, there were
23、developments in the past two centuries that are the foundation of what we call computer today. However, the basis for what we call a modern digital computer dates back to only the 1940s with the introduction by John von
24、Neumann of two key concepts: (1) a memory to hold a stored program and data, and (2) conditional branching. There two ideas are the foundation of a ce</p><p> (1) the invention of the transistor by Bell Lab
25、oratories in 1948;</p><p> (2) the development in the 1950s and 1960s of the high-level programming </p><p> languages COBOL (Common Business-Oriented Language) and FORTRAN</p><p>
26、; ( Formula Translator);</p><p> (3) the invention of the integrated circuit (IC) at Texas Instruments in 1958;</p><p> (4) the development of operating system in the early 1960s;</p>
27、<p> (5) the development of the microprocessor (a single chip consisting of the central</p><p> processing unit, memory, and input and output controls) by Inter in the early</p><p><b&
28、gt; 1970s;</b></p><p> (6) introduction by IBM of the personal computer in 1981;</p><p> (7) progressive miniaturization of components, starting with large scale integration</p>
29、<p> (LI) in the late 1970s, then very large scale integration (VLSI) in the 1980s, to</p><p> the present use of ultra large scale integration (ULSI).</p><p> Concurrent with these adva
30、nces were development in the areas of mass storage and display systems, both of which are fundamental requirements for digital image processing.The first computers powerful enough to carry out meaningful image processing
31、 tasks appeared in the early 1960s. The birth of what we call digital image processing today can be traced to the availability of those machines and the onset of the apace program during that period. It took the combinat
32、ion of those two developments to b</p><p> In parallel with space application, digital image processing techniques began in the late 1960s and early 1970s to be used in medical imaging, remote Earth resourc
33、es observations, and astronomy. The invention in the early 1970s of computerized axial tomography (CAT), also called computerized tomography (CT) for short, is one of the most important events in the application of image
34、 processing in medical diagnosis. Computerized axial tomography is a process in which a ring of detectors encircles a</p><p> 數(shù)字圖像處理方法的研究</p><p><b> 1 緒論</b></p><p>
35、數(shù)字圖像處理方法的研究源于兩個主要應(yīng)用領(lǐng)域:其一是為了便于人們分析而對圖像信息進(jìn)行改進(jìn);其二是為了使機(jī)器自動理解而對圖像數(shù)據(jù)進(jìn)行存儲、傳輸及顯示。</p><p> 1.1 數(shù)字圖像處理的概念</p><p> 一幅圖像可定義為一個二維函數(shù) f(x, y),這里x和y是空間坐標(biāo),而在任何一對空間坐標(biāo)f(x, y)上的幅值f稱為該點(diǎn)圖像的強(qiáng)度或灰度。當(dāng)x,y和幅為f為有限的、離散的數(shù)值時
36、,稱該點(diǎn)是由有限的元素組成的,沒一個元素都有一個特定的位置和幅值,這些元素稱為圖像元素、畫面元素或象素。象素是廣泛用于表示數(shù)字圖像元素的詞匯。在第二章,將用更正式的術(shù)語研究這些定義。視覺是人類最高級的感知器官,所以,毫無疑問圖像在人類感知中扮演著最重要的角色。然而,人類感知只限于電磁波譜的視覺波段,成像機(jī)器則可覆蓋幾乎全部電磁波譜,從伽馬射線到無線電波。它們可以對非人類習(xí)慣的那些圖像源進(jìn)行加工,這些圖像源包括超聲波、電子顯微鏡及計算機(jī)產(chǎn)
37、生的圖像。因此,數(shù)字圖像處理涉及各種各樣的應(yīng)用領(lǐng)域。</p><p> 圖像處理涉及的范疇或其他相關(guān)領(lǐng)域(例如,圖像分析和計算機(jī)視覺)的界定在初創(chuàng)人之間并沒有一致的看法。有時用處理的輸人和輸出內(nèi)容都是圖像這一特點(diǎn)來界定圖像處理的范圍。我們認(rèn)為這一定義僅是人為界定和限制。例如,在這個定義下,甚至最普通的計算一幅圖像灰度平均值的工作都不能算做是圖像處理。另一方面,有些領(lǐng)域(如計算機(jī)視覺)研究的最高目標(biāo)是用計算機(jī)去模
38、擬人類視覺,包括理解和推理并根據(jù)視覺輸人采取行動等。這一領(lǐng)域本身是人工智能的分支,其目的是模仿人類智能。人工智能領(lǐng)域處在其發(fā)展過程中的初期階段,它的發(fā)展比預(yù)期的要慢得多,圖像分析(也稱為圖像理解)領(lǐng)域則處在圖像處理和計算機(jī)視覺兩個學(xué)科之間。</p><p> 從圖像處理到計算機(jī)視覺這個連續(xù)的統(tǒng)一體內(nèi)并沒有明確的界線。然而,在這個連續(xù)的統(tǒng)一體中可以考慮三種典型的計算處理(即低級、中級和高級處理)來區(qū)分其中的各個學(xué)
39、科。低級處理涉及初級操作,如降低噪聲的圖像預(yù)處理,對比度增強(qiáng)和圖像尖銳化。低級處理是以輸人、輸出都是圖像為特點(diǎn)的處理。中級處理涉及分割〔 把圖像分為不同區(qū)域或目標(biāo)物)以及縮減對目標(biāo)物的描述,以使其更適合計算機(jī)處理及對不同日標(biāo)的分類(識別)。中級圖像處理是以輸人為圖像,但輸出是從這些圖像中提取的特征(如邊緣、輪廓及不同物體的標(biāo)識等)為特點(diǎn)的。最后,高級處理涉及在圖像分析中被識別物體的總體理解,以及執(zhí)行與視覺相關(guān)的識別函數(shù)(處在連續(xù)統(tǒng)一體邊
40、緣)等。</p><p> 根據(jù)上述討論,我們看到,圖像處理和圖像分析兩個領(lǐng)域合乎邏輯的重疊區(qū)域是圖像中特定區(qū)域或物體的識別這一領(lǐng)域。這樣,在本書中,我們界定數(shù)字圖像處理包括輸人和輸出均是圖像的處理,同時也包括從圖像中提取特征及識別特定物體的處理。舉一個簡單的文本自動分析方面的例子來具體說明這一概念。在自動分析文本時首先獲取一幅包含文本的圖像,對該圖像進(jìn)行預(yù)處理,提取(分割)字符,然后以適合計算機(jī)處理的形式描述
41、這些字符,最后識別這些字符,而所有這些操作都在本書界定的數(shù)字圖像處理的范圍內(nèi)。理解一頁的內(nèi)容可能要根據(jù)理解的復(fù)雜度從圖像分析或計算機(jī)視覺領(lǐng)域考慮問題。這樣,本書定義的數(shù)字圖像處理的概念將在有特殊社會和經(jīng)濟(jì)價值的領(lǐng)域內(nèi)通用。在以下各章展開的概念是那些應(yīng)用領(lǐng)域所用方法的基礎(chǔ)。</p><p> 1.2 數(shù)字圖像處理的起源</p><p> 數(shù)字圖像處理最早的應(yīng)用之一是在報紙業(yè),當(dāng)時,圖像第
42、一次通過海底電纜從倫敦傳往紐約。早在20世紀(jì)20年代曾引入 Btutlane 電纜圖片傳輸系統(tǒng),把橫跨大西洋傳送一幅圖片所需的時間從一個多星期減少到3個小時。為了用電纜傳輸圖片,首先要進(jìn)行編碼,然后在接收端用特殊的打印設(shè)備重構(gòu)該圖片。圖 1.1就是用這種方法傳送并利用電報打印機(jī)通過字符模擬中間色調(diào)還原出來的圖像。這些早期數(shù)字圖像視覺質(zhì)量的改進(jìn)工作,涉及到打印過程的選擇和亮度等級的分布等問題。用于得到圖1.1的打印方法到1921年底就被徹
43、底淘汰了,轉(zhuǎn)而支持一種基于光學(xué)還原的技術(shù),該技術(shù)在電報接收端用穿孔紙帶打出圖片。圖1.2 就是用這種方法得到的圖像,對比圖1.1,它在色調(diào)質(zhì)量和分辨率方面的改進(jìn)都很明顯。</p><p> 圖1.1 1421年由電報打印機(jī)采用特殊字</p><p> 符在編碼紙帶中產(chǎn)生的數(shù)字圖像</p><p> ( McFalsne)</p><p&g
44、t; 早期的Bartlane系統(tǒng)可以用5個灰度等級對圖像編碼,到1929年已增加到15個等級。圖1.3所示的這種典型類型的圖像就是用15級色調(diào)設(shè)備得到的。在這一時期,由于引入了一種用編碼圖像紙帶去調(diào)制光束而使底片感光的系統(tǒng),明顯地改善了復(fù)原過程。剛才引用的數(shù)字圖像的例子并沒有考慮數(shù)字圖像處理的結(jié)果,這主要是因為沒有涉及到計算機(jī)。因此,數(shù)字圖像處理的歷史與數(shù)字計算機(jī)的發(fā)展密切相關(guān)。事實(shí)上,數(shù)字圖像要求非常大的存儲和計算能力,因此數(shù)字圖像
45、處理領(lǐng)域的發(fā)展必須依靠數(shù)字計算機(jī)及數(shù)據(jù)存儲、顯示和傳輸?shù)认嚓P(guān)技術(shù)的發(fā)展。計算機(jī)的概念可追溯到5000多年前中國算盤的發(fā)明。近兩個世紀(jì)以來的一些發(fā)展也奠定了計算機(jī)的基礎(chǔ)。然而,現(xiàn)代計算機(jī)的基礎(chǔ)還要回溯到20世紀(jì)40年代由約翰·馮·諾依曼提出的兩個重要概念:(l)保存程序和數(shù)據(jù)的存儲器;(2)條件分支。這兩個概念是中央處理單元(CPU)的基礎(chǔ)。今天,它是計算機(jī)的心臟。從馮·諾依曼開始,引發(fā)了一系列重要技術(shù)進(jìn)步,
46、使得計算機(jī)以強(qiáng)大的功能用于數(shù)字圖像處理領(lǐng)域。簡單說,這些進(jìn)步可歸納為如下幾點(diǎn):</p><p> (1)1948年貝爾實(shí)驗室發(fā)明了晶體三極管</p><p> (2)20世紀(jì)50年代到20世紀(jì)60年代高級編程語言(如COBOL和FORTRAN)的 </p><p><b> 開發(fā);</b></p><p>
47、(3)1958年得州儀器公司發(fā)明了集成電路(IC);</p><p> (4)20世紀(jì)60年代早期操作系統(tǒng)的發(fā)展;</p><p> (5)20世紀(jì)70年代 Intel 公司開發(fā)了微處理器(由中央處理單元、存儲器和輸</p><p> 入、輸出控制組成的單一芯片);</p><p> (6)1981年IBM公司推出了個人計算機(jī);<
48、;/p><p> (7)20世紀(jì)70年代出現(xiàn)的大規(guī)模集成電路(LI)所引發(fā)的元件微小化革命,20世</p><p> 紀(jì)80年代出現(xiàn)了YLSI(超大規(guī)模集成電路),現(xiàn)在已出現(xiàn)了ULSI。</p><p> 圖1. 3在1929年從倫敦到紐約用15級色調(diào)設(shè)備通過電纜</p><p> 傳送的 Cenerale Pershing和 Foch的
49、未經(jīng)修飾的照片</p><p> 伴隨著這些技術(shù)進(jìn)步,大規(guī)模的存儲和顯示系統(tǒng)也隨之發(fā)展起來。這兩者均是數(shù)字圖像處理的基礎(chǔ)。第一臺可以執(zhí)行有意義的圖像處理任務(wù)的大型計算機(jī)出現(xiàn)在20世紀(jì)60年代早期。數(shù)字圖像處理技術(shù)的誕生可追溯至這一時期這些機(jī)器的使用和空間項目的開發(fā),這兩大發(fā)展把人們的注意力集中到數(shù)字圖像處理的潛能上。利用計算機(jī)技術(shù)改善空間探測器發(fā)回的圖像的工作,始于 1964 年美國加利福尼亞的噴氣推進(jìn)實(shí)驗室。
50、當(dāng)時由“旅行者 7 號”衛(wèi)星傳送的月球圖像由一臺計算機(jī)進(jìn)行了處理,以校正航天器上電視攝像機(jī)中各種類型的圖像畸變。圖1.4顯示了由“旅行者7號”于1954年7月31日上午(東部白天時間)9點(diǎn)09分在光線影響月球表面前約17分鐘時攝取的第一張月球圖像痕跡(稱為網(wǎng)狀痕跡)用于幾何校正,在第5章將討論該間題],這也是美國航天器取得的第一幅月球圖像?!奥眯姓?7 號”傳送的圖像可作為改善的增強(qiáng)和復(fù)原圖像(例如來自“探索者”登月一飛行、“水手號”系
51、列空間探淵器及阿波羅載人登月飛行的圖像)方法的基礎(chǔ)。進(jìn)行空間應(yīng)用的同時,數(shù)字圖像處理技術(shù)在20世紀(jì)60年代末和20世紀(jì)70年代初開始用于醫(yī)學(xué)圖像、地球遙感監(jiān)測和天文學(xué)等領(lǐng)域。早在2</p><p> 圖1. 4美國航天器傳送的第一張月球照片,“旅行者7號”</p><p> 衛(wèi)星1964年7月31日9點(diǎn) 09分(東部白天時間)在</p><p> 光線影響月球
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字圖像處理外文翻譯--- 數(shù)字圖像處理
- 外文翻譯--數(shù)字圖像處理方法的研究
- 外文翻譯--數(shù)字圖像處理方法的研究
- 外文翻譯--數(shù)字圖像處理方法的研究.doc
- 外文翻譯--數(shù)字圖像處理方法的研究.doc
- 數(shù)字圖像處理外文翻譯
- 畢業(yè)論文外文翻譯-數(shù)字圖像處理方法的研究
- 外文翻譯--數(shù)字圖像處理和邊緣檢測
- 畢業(yè)論文外文翻譯-數(shù)字圖像處理
- 外文翻譯----數(shù)字圖像處理與邊緣檢測
- 數(shù)字圖像處理與邊緣檢測論文外文翻譯
- 數(shù)字圖像處理方法的研究 外文翻譯 中英文文獻(xiàn)譯文
- 數(shù)字圖像處理方法的研究 外文翻譯 中英文文獻(xiàn)譯文
- 外文翻譯--數(shù)字圖像數(shù)據(jù)安
- 數(shù)字圖像處理課程設(shè)計---數(shù)字圖像處理
- 數(shù)字圖像處理
- 數(shù)字圖像處理論文-圖像分割方法研究-
- 數(shù)字圖像壓縮預(yù)處理方法研究.pdf
- 紅外數(shù)字圖像判讀處理方法研究.pdf
- 數(shù)字圖像處理課程設(shè)計--基于matlab的數(shù)字圖像處理
評論
0/150
提交評論