基于群智能算法優(yōu)化SVR的短時(shí)交通流預(yù)測(cè).pdf_第1頁(yè)
已閱讀1頁(yè),還剩55頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、智能交通系統(tǒng)是緩解道路交通擁堵、減少交通事故和提高交通運(yùn)行效率的重要應(yīng)用系統(tǒng)。實(shí)時(shí)準(zhǔn)確可靠的交通流量預(yù)測(cè)是實(shí)現(xiàn)智能交通系統(tǒng)控制和誘導(dǎo)的關(guān)鍵內(nèi)容,具有重大的理論研究和實(shí)際應(yīng)用價(jià)值。
  本文以短時(shí)交通流量預(yù)測(cè)為研究主題,總結(jié)了短時(shí)交通流預(yù)測(cè)的研究現(xiàn)狀,在學(xué)習(xí)交通流預(yù)測(cè)原理和支持向量回歸(Support Vector Regression,SVR)理論的基礎(chǔ)上,對(duì)基于SVR的短時(shí)交通流預(yù)測(cè)模型中參數(shù)選擇問(wèn)題進(jìn)行了探討和研究,運(yùn)用群智能

2、優(yōu)化方法進(jìn)行最優(yōu)參數(shù)選擇,并且仿真實(shí)際數(shù)據(jù)來(lái)驗(yàn)證提出的預(yù)測(cè)模型。本文的主要工作如下:
  1.對(duì)人工魚(yú)群算法優(yōu)化支持向量回歸的參數(shù)選擇模型進(jìn)行研究。針對(duì)支持向量回歸的懲罰系數(shù)、不敏感損失系數(shù)和核函數(shù)參數(shù)的選擇對(duì)回歸算法的預(yù)測(cè)精度的重要影響,結(jié)合交通流數(shù)據(jù)特征,本文運(yùn)用人工魚(yú)群算法對(duì)支持向量回歸參數(shù)進(jìn)行優(yōu)化選擇,同時(shí)引入人工魚(yú)群算法中感知視野和移動(dòng)步長(zhǎng)參數(shù)的自適應(yīng)搜索機(jī)制,建立了基于人工魚(yú)群算法優(yōu)化支持向量回歸的短時(shí)交通流預(yù)測(cè)模型。

3、實(shí)際數(shù)據(jù)的仿真實(shí)驗(yàn)和模型的對(duì)比結(jié)果表明了提出的回歸預(yù)測(cè)模型的可行性和有效性。
  2.對(duì)混合粒子群人工魚(yú)群算法優(yōu)化支持向量回歸的參數(shù)選擇模型進(jìn)行研究。在人工魚(yú)群算法優(yōu)化支持向量回歸的預(yù)測(cè)模型的研究基礎(chǔ)上,為解決人工魚(yú)群算法中的初始參數(shù)較多問(wèn)題以及步長(zhǎng)因子設(shè)置對(duì)尋優(yōu)性能的影響,本文提出采用粒子群優(yōu)化算法對(duì)人工魚(yú)群算法進(jìn)行改進(jìn),減少了步長(zhǎng)因子對(duì)人工魚(yú)群算法影響,并且引入混沌機(jī)制初始化人工魚(yú)群位置信息,從而對(duì)支持向量回歸進(jìn)行參數(shù)選擇,建

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論