2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、AppliedSoftComputing13(2013)2683–2691ContentslistsavailableatSciVerseScienceDirectAppliedSoftComputingjournalhomepage:www.elsevier.com/locate/asocWaveletbasedNeuro-Detectorforlowfrequenciesofvibrationsignalsinelectric mo

2、torsDuyguBayram ?, SerhatS ¸ ekerIstanbulTechnicalUniversity,ElectricalEngineeringDepartment,34469Istanbul,Turkeya r t i c l e i nf oArticlehistory:Received23September2010Receivedinrevisedform1September2012

3、Accepted24November2012Availableonline11December2012Keywords:AutoAssociativeNeuralNetworkMultiResolutionWaveletTransformElectricmotorAgingVibrationBearingdamageab s t r a c tThis study presentsa Waveletbased Neur

4、o-Detectorapproachemployedto detect the aging indicationsofan electricmotor. Analysisofthe aging indications,which can be seen in the low frequencyregion,isperformedusing vibrationsignals.Morespecifically

5、,two vibrationsignalsare observedfor healthyandfaulty (aged)cases whichare measuredfrom the sameelectricmotor.Multi ResolutionWaveletAnalysis(MRWA)is appliedin order to obtain low and highfrequencybands of

6、 the vibrationsignals.Thusfor detectingthe aging propertiesin the spectra, the PowerSpectralDensity (PSD) of the subbandforthe healthycase is used to train an Auto AssociativeNeural Network(AANN).The

7、PSD amplitudes,whichare computedfor the faulty case, are appliedto input nodesof the trained networkfor the re-callingprocessof AANN. Consequently,the simulationresults show that some spectralproperti

8、esdefinedin lowfrequencyregion are determinedthrough the error responseof AANN. Hence,somespecific frequenciesofthe bearingdamagerelated to the aging processare detectedand identified.©2012ElsevierB.V.

9、 All rightsreserved.1.IntroductionInductionmotoristhemostpopularelectricmotortypebecauseofitssimpleconstructionandlonglifewithoutmaintenanceneed.Intheliterature,therearelotsofstudiesrelatedtothedevelopmentandresearchofi

10、nductionmotors.Theperformancestudiesaregen-erallybasedonelectrical,mechanicalandthermalparameterslikevoltage,current,torque,temperature,noise,etc.Theseparametersreflectveryimportanthintsabouttheperformanceandworkingcondi

11、tionoftheelectricmotors.Theprognosticanddiagnosticstudiesoninductionmotorsareanotherimportantaspectinprovidingtheoperationalcontinuityoftheindustrialprocess[1–3].Andalso,conditionmonitoringstud-iesgainimportanceinearlyde

12、tectionoffailureinsomecriticalsystemslikenuclearpowerplantsandpetrochemicalprocesses[4,5].Inthissense,therearesomanystudiesaimingfindingoutthesourcesofdegradationsoninductionmotors.Mechanicalfailuresrelatedtothemanufactu

13、ringhavethegreatestmajorityintermsofAbbreviations:MRWA,MultiResolutionWaveletAnalysis;PSD,PowerSpectralDensity;AANN,AutoAssociativeNeuralNetwork;DWT,DiscreteWaveletTrans-form;BPF,BallPassFrequency;EDM,ElectricalDischarge

14、Machining. ? Correspondingauthorat:IstanbulTechnicalUniversity,ElectricalandElectron-icsFaculty,ElectricalEngineeringDepartment,34469Maslak,Istanbul,Turkey.Tel.:+902122856736;fax:+902122856700.E-mailaddresses:bayramd@itu

15、.edu.tr (D.Bayram),sekers@itu.edu.tr(S.S ¸ eker).theencounteredfaults[1]. Thesearerespectivelybearing,balanceandalignmentdefects[6–9].Inthismanner,somesignalprocessingmethodsareusedtoextractthehiddenhintsandinforma

16、tionofthefaultsignatures[10–14]. Vibrationsignalsusuallyshowcrucialindicationsaboutagingoftheelectricmotorwhereaselectricalsignalscarryhintsonly.Becauseofthis,vibrationsignalsareusedinvariousstudiesintheliterature[13–22]

17、. Forexample,theycanbeusedtodefineatransferfunctionofagingprocessinelectricmotor[15].Intheliterature,somestatisticaltechniquesareappliedtothevibrationsignalsinordertodetectagingeffectsandhenceitisfiguredoutthatsomestati

18、sticalparameterschangebyaging[16].Andalso,itispointedoutsomecorrelationsbetweenvibration’sspectraldensityandagingdefects[17–20]. Motorvibrationsignalsarealsousedtoextractsomefeaturesofbearingagingbywavelettransforms.Fro

19、mthispointofview,majoreffectsofthebearingdamagearedetectedinthehighfrequencyband(between2and4kHz)[21,22].Theaimofthisstudyistoanalyzetheelectricmotorvibrationsignal’slowfrequencybandusingawaveletbasedneuro-detectorapproa

20、ch,inordertoextractitsagingeffectsanddefects.However,thereisnoencounteredstudywhichobservestheroleofthelowfrequencybandintheinvestigationoftheagingeffects.Thisisthemostimportantcontributionofthisstudyintermsofextractiono

21、ftheagingeffects,aswellasusedmethodology.Anexperimentalsetupisrealizedtoobtainthevibrationsignaltogetherwithelectricalsignals.Intheexperiment,thevibrationsignalsofa5HPelectricmotorarerecordedbytwoaccelerometers.Inorderto

22、arrangethedata,asignalconditionerisusedbeforestoringthedataonaregular1568-4946/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved.http://dx.doi.org/10.1016/j.asoc.2012.11.019D.Bayram,S.S ¸ eker/AppliedSoftCompu

23、ting13(2013)2683–26912685Fig.2.MRWAatnthlevel.processtheoutputsofthehighfrequencyfiltersarenamedasdetailsDj,theoutputsofthelowfrequencyfiltersarenamedasapproximationsAj.Theschematicinterpretationofthen-levelmultiresoluti

24、onwaveletanalysisisshowninFig.2,herejisthedecompo-sitionlevel.ThesignalrepresentationcanbegivenasinEq.(4).s(t)=D1 +D2 +D3 +···+Dj +Aj (4)2.3.AutoAssociativeNeuralNetworksAutoAssociativeNeuralNetwork(AANN)i

25、safeedforward,fullyconnected,multilayerperceptronnetwork.ThedimensionsoftheinputandoutputlayersareequaltoeachotherintheAANNtopol-ogy.Also,thenumberofthehiddennodesforonehiddenlayerislessthanthenumberofinputandoutputnodes

26、.HencehiddenlayeroftheAANNiscalledas“bottleneck”,whichcompressestheinformationtoobtainacorrelationmodel[23].Sigmoidfunctionsareusedtoprovidethenonlinearityonthehiddenlayer.Theneedofnonlinearfunctionisindispensablebecause

27、AutoAssociativeNeuralNetworkisexpectedtoproduceitsinputattheoutputlayer[30–33].Atthetrainingprocess,thehiddenlayerappliesanencodingbycompressingtheinformationappliedtothenetworkastheinputsignal.Thenthenetworkdecodesbydec

28、ompressingthecarriedinformationtoproducethetargetsignal,whichisthesamewiththeinputsignal.ThestructureofAutoAssociativeNeuralNetworkleadstheusageareaofthenetworktodetectthefailurebycomparingtherealtimeoutputandtheoutputof

29、thenetwork.Forthisreason,AutoAssociativeNeuralNetworkisusedinsensorvalidation,detectionandmonitoringapplications[23,34,35].ThebasictopologyofanAutoAssociativeNeuralNetworkcanbegivenasshowninFig.3.Fig.3.Representativetopo

30、logyoftheAANN.AsatrainingalgorithmoftheAANN,BackPropagationalgo-rithmcanbeusedwhichisawell-knownalgorithmintherelatedliterature[36].3.ExperimentalstudyandmeasurementsystemAnexperimentalsetupisdesignedtoacquirethevibratio

31、nsig-nals.Twotypesofdataarecollectedusingthesetup,thesearevibrationdatainhealthycaseandthevibrationdatainfaultycase.Duringthisagingprocesstwotechniqueshavebeenexecutedonthemotor,theseareElectricalDischargeMachining(EDM)a

32、ndtheThermalAging,respectively.Asanaturalresultofthehighspeedoperationofelectricmotor,unexpectedshaftvoltageisinduced.Theshaftvoltagelevelincre-mentcancausebreakingdownofthegreasefilmbetweentherollingelementsandinner/out

33、erracesofthebearing.Hence,ran-domarcingoccursandthendischargecurrentsstarttoflowthroughtherollingelements.Asaresultofthisdischargemode,bearingflutingcomesinexistenceandthenbearingfaultsareencountered.TheElectricalDischar

34、geMachining(EDM)isasimulationofthisnaturalprocess.Forthispurpose,anexternalshaftvoltageandcur-rentisappliedtothemotorfor30minutesat30VACand27A.Theappliedexternalvoltageandcurrentcausethedischargesandbearingflutings.Alsot

35、hechemicalandthermalagingstepsareappliedtothemotorinordertoacceleratetheagingaftertheEDM.Chemicalandthermaleffectscausetothecorrosionandthermaldamageofthematerial.Intermsofthechemicalandthermalapplication,themotorisimmer

36、sedintothewatertankandputintotheovenat140 ?C.Inthissensetherearethreeaspectsoftheagingpro-cess.Theseareelectrical,chemicalandthermal.Thisprocedureisappliedforseventimes(7cycles)duringtheexperiment.Aftereachagingcycle,the

37、motorwasseparatedfromtheconnectionplatformbeforethechemicalandthermalapplication.However,foreachcycle,itwasfixedontheplatformagain,accordingtotheacceptablevibrationlevel.ThedetailsoftheexperimentcanbefoundinthePhDthesiso

38、fDr.A.S.ErbayandrelevantstudieswerementionedinthetextbygivenRefs.[37–39].Afterthesesteps,thevibrationdataaretakenbytheaccelero-metersplacedonthemotoraswellasthemotorcurrent/voltageinformationandthermaldata.However,electr

39、icalsignalsarewell-knowninformationsourcesfortrackingthemotorconditionintheliterature,thisinformationisfocusedonlinefrequency(fundamen-talfrequency)anditssidebands.Thermalvariationisalsoveryslowtoextractthemechanicaleffe

40、cts.Thereforethebestoneisthevibrationforthemechanicalandstructuralfaults.Forthisreason,inthestudyvibrationdataareused[37–39].Motortypeusedintheexperimentalstudyisaninductionmotorof5HP,three-phase,four-poles,designedfor60

41、Hz sup-plyfrequencyandwiththenominalspeed1742rpm(rotationperminute).InFig.4measurementanddataacquisitionsystemcanbeseen.Twoidenticalaccelerometersareusedtorecordthevibrationmeasurementsattheprocessend.Therefore,sensor#2

42、isonlyusedinthisstudy.Thesamplingfrequencyoftherecordeddatais12kHz.Besides,inordertoavoidfromthehighfrequencynoiseinterferedintherecordeddata,anantialiasingfilter,withcutofffrequencyat4kHz,isused.4.Applicationtovibration

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論