版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、% function nsga_2(pro)%% Main Function% Main program to run the NSGA-II MOEA.% Read the corresponding documentation to learn more about multiobjective% optimization using evolutionary algorithms.% initialize_variables ha
2、s two arguments; First being the population size% and the second the problem number. '1' corresponds to MOP1 and '2'% corresponds to MOP2.%inp_para_definition=input_parameters_definition;%% Initialize the
3、 variables% Declare the variables and initialize their values% pop - population% gen - generations% pro - problem number%clear;clc;tic;pop = 100; % 每一代的種群數(shù)gen = 100; % 總共的代數(shù)pro = 2; % 問題選擇 1 或者 2,見 switchswitch procase 1
4、% M is the number of objectives.M = 2;% V is the number of decision variables. In this case it is% difficult to visualize the decision variables space while the% objective space is just two dimensional.V = 6;case 2M = 3;
5、V = 12;case 3 % case 1 和 case 2 用來對(duì)整個(gè)算法進(jìn)行常規(guī)驗(yàn)證, 作為調(diào)試之用; case 3 為本工程所需;M = 2; %(output parameters 個(gè)數(shù))V = 8; %(input parameters 個(gè)數(shù))K = 10;end% Initialize the populationchromosome = initialize_variables(pop,pro);%% Sort the
6、initialized population% Sort the population using non-domination-sort. This returns two columns% for each individual which are the rank and the crowding distance% corresponding to their position in the front they belong.
7、 真是牛 X 了。chromosome = non_domination_sort_mod(chromosome,pro);%% Start the evolution processintermediate_chromosome(main_pop+1:main_pop+offspring_pop,1:M+V)=offspring_chromosome;%intermediate_chromosome=inter_chromo(chro
8、mosome,offspring_chromosome,pro);% Non-domination-sort of intermediate population% The intermediate population is sorted again based on non-domination sort% before the replacement operator is performed on the intermediat
9、e% population.intermediate_chromosome = ...non_domination_sort_mod(intermediate_chromosome,pro);% Perform Selection% Once the intermediate population is sorted only the best solution is% selected based on it rank and cro
10、wding distance. Each front is filled in% ascending order until the addition of population size is reached. The% last front is included in the population based on the individuals with% least crowding distancechromosome =
11、replace_chromosome(intermediate_chromosome,pro,pop);if ~mod(i,10)fprintf('%d\n',i);endend%% Result% Save the result in ASCII text format.save solution.txt chromosome -ASCII%% Visualize% The following is used to v
12、isualize the result for the given problem.switch procase 1plot(chromosome(:,V + 1),chromosome(:,V + 2),'y+');title('MOP1 using NSGA-II');xlabel('f(x_1)');ylabel('f(x_2)');case 2plot3(chrom
13、osome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');title('MOP2 using NSGA-II');xlabel('f(x_1)');ylabel('f(x_2)');zlabel('f(x_3)');end%disp('run time is:')%toc;%%%%
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遺傳算法程序代碼--多目標(biāo)優(yōu)化--函數(shù)最值問題
- 單目標(biāo)_多目標(biāo)遺傳算法的研究.pdf
- 多目標(biāo)優(yōu)化的遺傳算法研究.pdf
- 多目標(biāo)遺傳算法應(yīng)用的研究.pdf
- 基于遺傳算法的多目標(biāo)優(yōu)化算法研究.pdf
- 基于新模型的多目標(biāo)遺傳算法.pdf
- 遺傳算法matlab代碼
- 基于遺傳算法的工程多目標(biāo)優(yōu)化.pdf
- 基于多目標(biāo)遺傳算法求解Steiner樹問題.pdf
- 改進(jìn)的多目標(biāo)優(yōu)化遺傳算法及多目標(biāo)優(yōu)化軟件的研制.pdf
- 基于多目標(biāo)遺傳算法的車間調(diào)度研究.pdf
- 基于遺傳算法的工程多目標(biāo)優(yōu)化研究.pdf
- 基于免疫遺傳算法的多目標(biāo)優(yōu)化研究.pdf
- 基于個(gè)體排斥的多目標(biāo)遺傳算法研究.pdf
- 改進(jìn)的遺傳算法求解多目標(biāo)優(yōu)化問題.pdf
- 求解Pareto Front多目標(biāo)遺傳算法的研究.pdf
- 多目標(biāo)遺傳算法中非支配集構(gòu)造算法的研究.pdf
- 基于單目標(biāo)和多目標(biāo)遺傳算法的壓縮感知重構(gòu).pdf
- 基于遺傳算法的多目標(biāo)flow-shop調(diào)度.pdf
- 基于改進(jìn)遺傳算法的多目標(biāo)TSP問題研究.pdf
評(píng)論
0/150
提交評(píng)論