基于圖像底層特征的圖像型垃圾郵件識(shí)別研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩73頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、垃圾郵件已經(jīng)成為世界各地電子郵件用戶的公害,為了有效阻止垃圾郵件的不斷增長(zhǎng),國(guó)內(nèi)外學(xué)者已經(jīng)提出了多種垃圾郵件檢測(cè)算法。當(dāng)前主流的反垃圾郵件系統(tǒng)主要采用了基于文本內(nèi)容特征的手段來(lái)檢測(cè)和過(guò)濾垃圾郵件。為了規(guī)避此類反垃圾郵件系統(tǒng)的檢查,垃圾郵件發(fā)送者改用“圖像型垃圾郵件”來(lái)發(fā)送垃圾信息。因此研究圖像型垃圾郵件檢測(cè)與過(guò)濾技術(shù)具有重要的理論意義與實(shí)際價(jià)值。
  本文在詳細(xì)分析了圖像型垃圾郵件特點(diǎn)的基礎(chǔ)上,主要完成了如下的工作:
  首

2、先,提出并實(shí)現(xiàn)了一種基于圓周模板的角點(diǎn)信息提取算法,該算法能夠快速的提取圖像中的角點(diǎn)信息。此算法大幅度的降低了角點(diǎn)檢測(cè)的耗時(shí),這為檢測(cè)垃圾郵件圖像的后續(xù)處理工作贏得了時(shí)間。
  其次,為提取圖像的文字布局和輪廓特征,提出一種適合于垃圾郵件圖像的圖像布局和輪廓特征的邊緣夾角特征。實(shí)驗(yàn)結(jié)果表明,此特征很好的刻畫(huà)了圖像的布局和輪廓特征。
  最后,提出并實(shí)現(xiàn)了一種有效的基于圖像底層特征的圖像型垃圾郵件檢測(cè)方法。此方法通過(guò)提取圖像布

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論