版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、上海交通大學(xué)碩士學(xué)位論文胸部X線影像中肺部結(jié)節(jié)的自動(dòng)檢測(cè)技術(shù)——不平衡數(shù)據(jù)集的分類姓名:王娟娟申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):生物醫(yī)學(xué)工程指導(dǎo)教師:任秋實(shí);張繼武20070101II COMPUTED-AIDED DETECTION IN CHEST X-RAY —— CLASSIFICATION ON IMBALANCED DATA ABSTRACT The lung cancer is the No. 1 Cancer Killer wo
2、rldwide, and the cure of tumors is always the aim that people pursued. The key of treatments is early diagnosis. Being regarded as one of the general clinical examination, chest radiography is ubiquitous in clinical prac
3、tice, it make early diagnosis of primary lung cancer significant. But at the same time it encountered many problems, for example radiographer often missed tumors and diagnosis falsely when they faced so many images. The
4、techniques of image processing and pattern recognition make it possible to computer-aided read images, it helps doctors to increase the workflow efficiency and reduce their eye fatigue, thus may improve cancer diagnostic
5、 accuracy. The detection of lung nodule includes pre-processing of images, the extraction of pulmonary parenchyma, the segmentation of region of interest (ROI), features extraction of ROI and classification. The performa
6、nce is bad when we use traditional classification algorithms, because the number of normal samples is far more than the number of cancer samples. Therefore, it is very important to research on classification on imbalance
7、d data. We do research from there aspects: Firstly, we propose a novel over-sampling approach named LLE-Based SMOTE. It can reduce the imbalance of data through incorporating over-sampling method with nonlinear dimension
8、al reduction. The locally linear embedding algorithm (LLE) is first applied to map the high-dimensional data into a low-dimensional space, where the input data is more separable, and thus can be over-sampled by synthetic
9、 minority over-sampling technique (SMOTE).Then the synthetic data points generated by SMOTE are mapped back to the original input space as well through LLE. Secondly, we introduce support vector machines with different c
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 胸部數(shù)字化X線影像(DR)中肺部小結(jié)節(jié)的自動(dòng)檢測(cè)技術(shù)及臨床應(yīng)用探討.pdf
- 肺部結(jié)節(jié)的自動(dòng)檢測(cè)和特征分析.pdf
- 不平衡數(shù)據(jù)集分類算法的研究.pdf
- 基于不平衡數(shù)據(jù)集的文本分類技術(shù).pdf
- 不平衡數(shù)據(jù)集分類問題研究.pdf
- 基于胸片的肺部結(jié)節(jié)自動(dòng)檢測(cè)方法研究.pdf
- 面向不平衡數(shù)據(jù)集的分類算法研究.pdf
- 基于不平衡數(shù)據(jù)集的數(shù)據(jù)挖掘分類算法研究.pdf
- 半監(jiān)督學(xué)習(xí)中不平衡數(shù)據(jù)集分類研究.pdf
- 面向不平衡數(shù)據(jù)集分類的層次引力模型研究.pdf
- 不平衡入侵檢測(cè)數(shù)據(jù)的代價(jià)敏感分類策略.pdf
- 半監(jiān)督不平衡數(shù)據(jù)的分類.pdf
- 不平衡數(shù)據(jù)集分類的Random-SMOTE方法研究.pdf
- X波段測(cè)量線自動(dòng)檢測(cè)系統(tǒng)的研制.pdf
- 文本分類中不平衡數(shù)據(jù)的處理.pdf
- 不平衡數(shù)據(jù)分類問題研究.pdf
- 針對(duì)不平衡數(shù)據(jù)集的螺栓擰緊工藝異常檢測(cè).pdf
- 數(shù)據(jù)挖掘不平衡分類中的特征選擇技術(shù)研究.pdf
- 基于支持向量機(jī)的不平衡數(shù)據(jù)集分類算法研究.pdf
- 數(shù)據(jù)不平衡分類問題研究.pdf
評(píng)論
0/150
提交評(píng)論