版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、華中科技大學(xué)碩士學(xué)位論文基于SAIL模型的光譜解混研究姓名:展昕申請學(xué)位級別:碩士專業(yè):空間信息科學(xué)與技術(shù)指導(dǎo)教師:田巖20090527華 中 科 技 大 學(xué) 碩 士 學(xué) 位 論 文 華 中 科 技 大 學(xué) 碩 士 學(xué) 位 論 文 IIAbstract Spectra are mixed, as frequently happens in the complicated environment due to sensor res
2、olution limit. Now, with development and wide application of hyperspectral remote sensing, hyperspectral unmixing has been paid more and more attention. Not only could it compensate for the sensor resolution limit caus
3、ed by hardware, but also it could reduce costs of high resolution image acquisition. So it’s of great significance in the development of hyperspectral remote sensing. Generally speaking, there are two kinds of spectra
4、l unmixing methods: linear and nonlinear. Due to the scientificity and simplicity, linear methods have been widely used. According to the kinds of spectral mixing we proposed in this paper, linear methods are suitable f
5、or adjacent mixing. However, with respect to our research object the canopy/soil system, which is up-down mixed, linear methods are not suitable anymore. More importantly, linear methods are not based on physics but stat
6、istics. For this reason, in this paper, we use radiative transfer theory to solve spectral unmixing problem in canopy/soil system. Firstly, by the inversion of the canopy reflectance model SAIL(Scattering by Arbitrarily
7、Inclined Leaves) based on particle swarm optimizer, we obtain leaf reflectance, leaf transmittance and soil reflectance. Secondly, let the value of soil reflectance be leaf reflectance value. Lastly, we calculate pure ca
8、nopy reflectance based on SAIL. So in this way, we could obtain pure canopy spectra in the end. In view of present research working emphatically on simulated data, here we do research not only for the simulated data but
9、also for the measured data, and the experiments show spectral unmixing based on SAIL model and particle swarm optimizer is feasible. Keywords: spectral unmixing, canopy reflectance model, SAIL model, particle swarm op
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于GORT混合模型的光譜解混.pdf
- 高光譜圖像的光譜解混模型與算法研究.pdf
- 基于廣義雙線性模型的高光譜解混.pdf
- 光譜解混
- 基于稀疏表示的高光譜圖像解混研究.pdf
- 基于光譜解混的MODIS云量估計方法研究.pdf
- 基于迭代光譜混合分析的高光譜圖像解混技術(shù)研究.pdf
- 基于稀疏約束的高光譜解混技術(shù)研究.pdf
- 高光譜遙感影像光譜解混算法研究.pdf
- 基于非負(fù)矩陣分解的高光譜圖像解混研究.pdf
- 高光譜圖像解混算法研究.pdf
- 基于結(jié)構(gòu)稀疏表示的高光譜圖像解混.pdf
- 高光譜圖像線性解混算法研究.pdf
- 高光譜圖像解混技術(shù)研究.pdf
- 基于低秩表示的高光譜圖像解混算法研究.pdf
- 基于差分搜索的高光譜圖像解混算法研究.pdf
- 基于聯(lián)合稀疏表示的高光譜圖像解混方法研究.pdf
- 高光譜圖像光譜解混及端元提取方法研究.pdf
- 高光譜像元解混技術(shù)研究.pdf
- 高光譜遙感圖像解混技術(shù)研究.pdf
評論
0/150
提交評論