版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 畢業(yè)設(shè)計外文資料翻譯</p><p> 題 目 30萬噸/年MTBE氣分裝置中 </p><p> 碳四碳五分離過程模擬研究 </p><p> 學院名稱 化學與制藥工程學院 </p><p> 專業(yè)班級 化工09-1 </p&
2、gt;<p> 學生姓名 魏 紅 </p><p> 導師姓名 張文郁 </p><p> 二〇一三年五月三十日</p><p> Journal of Membrane Science 178 (2000) 25-34</p><p
3、> 氣相轉(zhuǎn)移法合成MFI型沸石分子篩分離丁烷和二甲苯異構(gòu)體</p><p> Takaaki Matsufujia,Norikazu Nishiyamaa,</p><p> Masahiko Matsukatab,Korekazu Ueyamab</p><p> aDivision of Chemical Engineering,Graduate
4、School of Engineering Science,Osaka University,bDepartment of Applied Chemistry,Waseda University</p><p> 摘 要 在多孔氧化鋁載體上以氣相轉(zhuǎn)移法(VPT)制作的MFI型沸石分子篩,純的或混合丁烷異構(gòu)體的擴散測定范圍在300~375K.分離系數(shù)范圍較理想的選擇性更大。這一結(jié)果表明二元系統(tǒng)的正丁烷可以被選
5、擇性吸附從而得到分離。</p><p> 在303K對二甲苯異構(gòu)體進行擴散測試.二甲苯在一元系統(tǒng)中最有擴散性。對二元混合物中的鄰二甲苯和對二甲苯及三元混合物中鄰、間、對甲苯的的擴散測試,鄰二甲苯最先被擴散分離出,既而,對二甲苯逐漸減少,含量最終低于其它二甲苯異構(gòu)體。間二甲苯吸附在分子篩的空隙中對對二甲苯的擴散有阻止作用。©2000艾斯維爾有限責任公司保留所有權(quán)利。</p><p&g
6、t; 關(guān)鍵詞 分子篩; MFI氣體分離; 吸附; 氣相蒸餾</p><p><b> 1 簡介</b></p><p> 近年來,合成沸石分子篩有水熱法和氣相轉(zhuǎn)移(VPT)兩種方法,沸石氣孔的分子尺寸大小對烴類混合物的分離起著重要作用。沸石分子篩分離碳氫化合物的報道引人注目。MFI型沸石分子篩分離最常見的線性和支鏈烴類混合物,例如正異丁烷和正己烷/2,2-二
7、甲基丁烷的分離已有報道。MFI有兩種類型相交渠道組成的框架結(jié)構(gòu)這都定義為10元環(huán)。在室溫下,正異丁烷和正己烷、2,2-二甲基丁烷混合物的分離因子分別為20-60,大于600。</p><p> 除了線性和支鏈烴類混合物,也有MFI或鎂堿沸石分子篩分離芳烴的研究。Baertsch等報道,佐野伊特爾用氧化鋁載體的水熱法合成制備純硅分子篩,如果分子篩孔徑接近1nm則很難分離鄰、對二甲苯,因為芳烴很難擴散過純硅分子膜。
8、二元及三元系統(tǒng)的擴散與一元系擴散類似。他們用單程轉(zhuǎn)移理論解釋上述結(jié)果。MFI的孔徑太窄,芳烴分子不能通過,因此,擴散速度最慢的分子抑制其他物質(zhì)的擴散。選擇性吸附在孔隙入口似乎發(fā)揮重要作用。但是,鄰對二甲苯,對二甲苯/乙苯,二甲苯/乙苯、間二甲苯/乙苯的二元混合物在380~480K下,沒有得到分離。他們的研究結(jié)果表明,最易透過的組分在一元系統(tǒng)的選擇性吸附很難發(fā)生在二元和三元系統(tǒng)中。</p><p> 另外,科澤爾
9、等得到了二甲苯的分離因子,在298Kα(p-xylene/o-xylene)<1.0,</p><p> 在375~415K下α(p-xylene/o-xylene)>200,這表明對二甲苯/鄰二甲苯二元混合物的分離因子很大程度上取決于操作溫度。這也表明了氣相擴散對二甲苯異構(gòu)體混合物分離的可能性。</p><p> 以前報道,在303K下,F(xiàn)ER分子篩對二甲苯/鄰二甲苯的二
10、元混合物的分離系數(shù)為3.1。我們希望二甲苯異構(gòu)體通量大一點,更深的研究發(fā)現(xiàn)MFI型沸石分子篩的分離通量會更大一點,因為MFI的孔徑(0.53nm×0.56nm和0.51nm×0.55nm)比FER的孔徑(0.54nm×0.42nm和0.46nm×0.37nm)大。</p><p> 在研究中,用VPT法制備MFI分子篩。進行了一元氣體擴散和丁烷異構(gòu)體的混合氣體分離測試。采
11、用擴散汽化技術(shù)研究二甲苯異構(gòu)體在MFI膜中的擴散性能。</p><p><b> 2 實驗</b></p><p> 2.1 初凝膠的制備</p><p> 以膜面積1.0×10-4m2,平均孔徑為0.1μm的多孔氧化鋁作為載體。在pH值=10的條件下,把氧化鋁載體處理為硅溶膠。在303K下,以硅溶膠制備鋁硅酸鹽溶膠30WT%
12、的SiO2、0.04WT%的Al2O3和0.4WT%的Na2O(日本化工有限公司)及氫氧化鈉溶液(4N)(光純化學工業(yè)有限公司)。二氧化硅與氫氧化鈉溶液在303K混合,初凝膠的組成為1000二氧化硅 : 1.0氧化鋁 : 210氧化鈉 : 25000水。在303K下,把載體浸泡在初溶膠里處理1天。然后,把溶膠注入氧化鋁載體的孔隙,持續(xù)注入1小時。</p><p> 2.2 氣相轉(zhuǎn)移法結(jié)晶干凝膠</p&g
13、t;<p> 涂有溶膠的載體在298K下放置在高壓釜內(nèi)干燥24小時,高壓釜的容積100立方厘米。乙二胺(0.5毫升)、三乙胺(1.0毫升)和水(0.5毫升)的混合物倒入反應釜使產(chǎn)生蒸汽。在453K下和一定壓力下結(jié)晶4天。然后在773K下,在空氣中焙燒10小時。在473~773K下控制升溫速率0.1Kmin-1。對產(chǎn)品的結(jié)晶度和結(jié)構(gòu)進行了X射線衍射(XRD),使用銅嘉輻射(Philips X’s Pert-MRD)分析。所
14、產(chǎn)生的形態(tài)用電子顯微鏡(SEM,HITACHI S-2250)掃描檢測。</p><p> 圖1 擴散汽化實驗裝置原理圖</p><p><b> 2.3 擴散測量</b></p><p> 分子篩和儀器界面用環(huán)氧樹脂密封。先把吸附在沸石分子篩中的水在420K 排除2小時。在每次膜擴散實驗前,在773K下焙燒分子篩4~10小時以除去吸附
15、的組分和環(huán)氧樹脂。</p><p> 2.3.1 擴散汽化</p><p> 為測定分子篩膜的致密度,在303K擴散汽化1,3,5-三異丙(TIPB)25小時,1,3,5-三異丙(TIPB)動力學直徑(0.85nm)比MFI(0.53nm×0.56nm,0.51 nm×0.55nm)的孔徑尺寸大。沸石分子篩吸附在玻璃管的一端截面積為0.50×10?4m2
16、。TIPB液體倒在玻璃管上。如圖2真空條件下氣體吸附示意圖。</p><p> 圖2 氣體吸附原理圖</p><p> 在液氮冷卻抽集器收集25小時,并配有火焰離子化檢測器氣相色譜儀分析。</p><p> 在303K下進行二甲苯異構(gòu)體的擴散汽化。一、二元(鄰二甲苯/間二甲苯)和三元(對二甲苯/間二甲苯/鄰二甲苯)測試。其組成由氣相色譜儀測定。</p&g
17、t;<p> .3.2 氣體擴散的測量</p><p> 使用壓力梯度(PG)法進行氣體擴散測量。擴散測量分批進行,如圖2所示。</p><p> 壓力梯度(PG)法的進料的總壓力使用壓力變送器測量。擴散側(cè)壓力控制到小于50Pa,這種情況稱為真空。純氣體,氦氣、氮氣、正丁烷、異丁烷和SF6在300~375K進行擴散測量,這些氣體在大氣壓力下進料側(cè)的擴散率壓力從105降
18、到95Pa。理想狀態(tài)下的選擇性根據(jù)擴散率計算。</p><p> 丁烷異構(gòu)體的混合物進行擴散測量溫度范圍是300~375K。進氣和出氣由帶TC的探測器和填充柱氣相色譜儀分析。進氣組成為52/48正丁烷/異丁烷(摩爾比)。丁烷異構(gòu)體的擴散率和分離因子(正丁烷/異丁烷)由擴散總量和進氣的組成計算。混合氣體的分離系數(shù)計算式如下:</p><p> 分別代表正、異丁烷的摩爾分數(shù)</p&g
19、t;<p> 2.4 丁烷異構(gòu)體在MFI的吸附</p><p> 在100~5KPa、303~307K溫度范圍內(nèi),用VPT法合成微粒常規(guī)容積法進行吸附測量,0.5g的MFI樣品在400K下脫氣2小時,直到電容絕對壓力傳感器壓力沒有壓力變化。二元吸附丁烷異構(gòu)體在303~375K的溫度范圍內(nèi)吸附測量,同樣適于一元系統(tǒng)。摩爾比52/48的正異丁烷異構(gòu)體的混合物放入有MFI顆粒的密封槽,在吸附過程中壓
20、力逐漸減少,當壓力達到一個平衡值,用氣相色譜儀分析氣相組成。</p><p><b> 3 結(jié)果與討論</b></p><p> 3.1 MFI型沸石分子篩的密度</p><p> 據(jù)報道,載體內(nèi)部的FER /氧化鋁復合層很緊密。圖3顯示了VPT法合成(a)MFI 的XRD圖譜、(b)分子篩、(c)MFI分子篩。MFI的反射峰在除去頂
21、層后觀測到。圖4顯示前除去頂層和產(chǎn)品的截面前除去頂層和后去除上層的頂面的SEM圖像。在MFI沸石分子篩的上表面可以看到沸石晶體之間空隙,如圖4(a)所示。刮去上層表面可看到載體內(nèi)部20毫米厚的/氧化鋁復合層支持,如圖4(c)。</p><p> 圖3 XRD的分子篩圖</p><p> 被測分子比沸石孔大似乎是一個有用的技術(shù)評估。用TIPB做擴散汽化 MFI分子篩基準,沒有TIPB透過
22、分子篩,則擴散通量的TIPB小于1.0×10-9 molm-2s-1,這是檢測極限。因此,得出的結(jié)論是MFI分子篩實際上是無孔的。</p><p> 丁烷/異丁烷、N2/SF6可作為選擇性良好指標。在300K,N2/SF6和正的選擇性分別范圍分別為1.6~138和10~90。有不同選擇性的報道,是由于使用不同的擴散方法和擴散條件。圖5顯示了溫度與N2和SF6擴散率的關(guān)系,N2和SF6的擴散率隨溫度升高
23、而增加。在溫度303~375K,N2/SF6理想選擇性為8~13。圖6顯示丁烷異構(gòu)體的擴散結(jié)果,丁烷異構(gòu)體在一元系統(tǒng)的擴散率隨著溫度的升高而升高。如圖6,300K、PG法條件下正丁烷/異丁烷的理想選擇性分別為22,335K時為16,375K時是14。以上內(nèi)容均有文獻報道。</p><p> 圖4 分子篩上表面電子圖</p><p> 圖5 N2、SF6及N2/SF6在不同溫度下理想選擇
24、性圖</p><p> 3.2 正丁烷/異丁烷的分離</p><p> 在二元系統(tǒng)中,丁烷異構(gòu)體的擴散率也隨溫度升高而增加。正、異丁烷的分離系數(shù)在300K時為28,在335K時為40,375K時為69,見圖圖6(b)。分離系數(shù)始終比選擇性大。</p><p> 圖6 丁烷異構(gòu)體通過MFI分子篩的滲透結(jié)果圖</p><p> VPT法
25、合成的MFI顆粒在一元和二元系統(tǒng)中的丁烷異構(gòu)體的吸附進行了測量。表1顯示了丁烷異構(gòu)體在MFI顆粒吸附在一元系統(tǒng)的數(shù)量。正丁烷/異丁烷的吸附量隨著溫度的升高(從300到375K)從1.2升到1.9。</p><p> 表2顯示了丁烷異構(gòu)體二元相在MFI顆粒上的吸附量。分離因子總是比理想的選擇性大。這表明,正丁烷優(yōu)先吸附在MFI分子篩上對丁烷異構(gòu)體的混合物的選擇性分離起著重要作用。丁烷異構(gòu)體之間的擴散差異可能有助于
26、異構(gòu)體的分離,因為分離的選擇性很大。</p><p> 表1 一元系統(tǒng)中丁異構(gòu)體的吸附量</p><p> 表2 二元系統(tǒng)中丁異構(gòu)體的吸附量</p><p> 3.4 二甲苯異構(gòu)體的分離</p><p> 表3 列出了一元系統(tǒng)中的二甲苯異構(gòu)體的通量。對二甲苯的通量是三種異構(gòu)體中</p><p> 最大的。其
27、選擇性的順序可以通過規(guī)模效應來解釋。對二甲苯的動力學直徑為0.59nm、間二甲苯和鄰二甲苯為0.68nm。</p><p> 表3 在303K下純二甲苯異構(gòu)體組分的氣相結(jié)果</p><p> 圖7(a)所示為瞬時通量剖面50/50對/間二甲苯混合物的擴散汽化。對二甲苯優(yōu)先擴散,具有通量的最大值,間二甲苯逐漸增加,間二甲苯穩(wěn)態(tài)通量大于二甲苯。在穩(wěn)態(tài)時對/間二甲苯系統(tǒng)的分離系數(shù)為0.43,
28、選擇性一般。</p><p> 圖7(b),對二甲苯最先擴散,并最終成為三元混合物中擴散最慢的?;旌衔镌贛FI分子篩的擴散這表明,動力學直徑不是分離二甲苯異構(gòu)體混合物的一個限制因素。穩(wěn)態(tài)時對二甲苯/M-二甲苯,對二甲苯/鄰二甲苯,鄰二甲苯/間二甲苯的分離系數(shù)分別為0.16,0.18和1.1。</p><p> 圖7 在303K下二甲苯異構(gòu)體通過分子篩結(jié)果圖</p><
29、;p> .Karsli等報道稱,在室溫下預加裝載二甲苯引起對稱性的變化和晶格扭曲增加了間二甲苯和鄰二甲苯在毛孔的吸附率。人們認為,對二甲苯吸附在MFI的毛孔打開了MFI的毛孔。因此,間二甲苯和鄰二甲苯很容易被擴散到MFI分子篩的各處。</p><p> 圖8顯示了在一元系統(tǒng)含二甲苯異構(gòu)體的三元混合物的中間二甲苯擴散汽化結(jié)果。間二甲苯的通量逐漸下降。因為流入間二甲苯的濃度變低。鄰二甲苯的穩(wěn)態(tài)流量變大,進而
30、達到如圖第7(b)幾乎相同的值,然而,對二甲苯的流量小于1.0×10-9molm?2s?1,是實驗中的檢測限,表明在MFI的毛孔填塞間二甲苯抑制了對二甲苯的擴散。穩(wěn)定態(tài)的選擇性分離表明,間-二甲苯,鄰二甲苯吸附比對二甲苯在MFI分子篩的吸附更大。</p><p> 圖8 間二甲苯滲透后二甲苯的三元混合物與定組分下的三元混合物滲透結(jié)果比較圖</p><p> 3.4 丁烷異構(gòu)
31、體和二甲苯異構(gòu)體分離的比較</p><p> 正丁烷和異丁烷動力學直徑分別為0.43~0.50nm,比二甲苯異構(gòu)體直徑小。在一元系統(tǒng)中,分子直徑較小的正丁烷比異丁烷擴散快,同樣對二甲苯比其它異構(gòu)體擴散的也快。小直徑的正丁烷優(yōu)先得到分離,因為正丁烷是一種易吸附組分。但是,分離二甲苯異構(gòu)體的混合物則相反,雖然對二甲苯是最先擴散組分。人們認為,在MFI</p><p> 的毛孔處,相對于鄰二
32、甲苯和間二甲苯對二甲苯是一種擴散速度快但較小吸附速率的組分。然而,由于二甲苯異構(gòu)體的動力學直徑接近的MFI的孔徑,選擇性發(fā)生逆轉(zhuǎn)速度非常緩慢。</p><p> 3.5 焙燒后的擴散數(shù)據(jù)可重復性</p><p> 我們進行了35焙燒程序以去除吸附在整個分子篩上的實驗組分。對焙燒對擴散性能的影響進行了研究。重復使用他作為探針分子的擴散數(shù)據(jù)。在375K下He的第一次擴散測量的擴散率為1.
33、9×10﹣9molm-2s-1pa-1,最后擴散測量,He的測量結(jié)果是1.8×10﹣9molm-2s-1pa-1,這表明,He的擴散率可重復性。此外,對丁烷和二甲苯異構(gòu)體的可重復性測定。可見,MFI分子篩在擴散和焙燒條件下具有很好的的穩(wěn)定性。</p><p><b> 結(jié) 論</b></p><p> 協(xié)同擴散是使用MFI膜分離丁烷異構(gòu)體
34、的重要原因。在一元系統(tǒng)中對二甲苯在二甲苯異構(gòu)體中是最易擴散的組分。然而, 在二元和三元系統(tǒng)中間二甲苯和鄰二甲苯的擴散速度比對二甲苯快。間二甲苯吸附在MFI的孔隙中似乎抑制對二甲苯的滲透。</p><p><b> 致 謝</b></p><p> 非常感激NGK Insulators Ltd.提供氧化鋁載體, 和Yasuyuki Egashira博士(大阪大
35、學化學工程部)的講解。同時也對大阪大學的化學工程部提供x射線衍射、掃描電鏡測驗表示感謝。</p><p><b> 參 考 文 獻</b></p><p> [1] E.R. Geus, H. Bekkum, W.J.W. Bakker, J.A. Moulijin, Hightemperaturestainless steel supported zeolite
36、 (MFI) membranes:preparation, module concentration, and permeationexperiments, Microporous Mater. 1 (1993) 131–147.</p><p> [2] Y. Yan, M.E. Davis, G.R. Gavalas, Preparation of zeoliteZSM-5 membranes by in-
37、situ crystallization on porousa-Al2O3, Ind. Eng. Chem. Res. 34 (1995) 1652–1661.</p><p> [3] C. Bai, M.D. Jia, J.L. Falconer, R.D. Noble, Preparation andseparation properties of silicalite composite membran
38、es, J.Membr. Sci. 105 (1995) 79–87.</p><p> [4] Z.A.E.P. Vroon, K. Keizer, M.J. Gilde, H. Verweij, A.J.Burggraaf, Transport properties of alkanes through ceramicthin zeolite MFI membranes, J. Membr. Sci. 1
39、13 (1996) 293–300.</p><p> [5] W.J.W. Bakker, F. Kapteijn, J. Poppe, J.A. Moulijn, Permeationcharacteristics of a metal-supported silicalite-1 zeolitemembrane, J. Membr. Sci. 117 (1996) 57–78.</p>&l
40、t;p> [6] K. Kusakabe, S. Yoneshige, A. Murata, S. Morooka, Morphologyand gas permeance of ZSM-5-type zeolite membraneformed on porous a-alumina support tube, J. Membr. Sci.116 (1996) 39–46.</p><p> [7]
41、K. Kusakabe, A. Murata, T. Kuroda, S. Morooka, Preparationof MFI zeolite membranes and their use in separating n-butaneand i-butane, J. Chem. Eng. Jpn. 30 (1997) 72–78.</p><p> [8] J. Coronas, J.L. Falconer
42、, R.D. Noble, Characterization andpermeation properties of ZSM-5 tubular membranes, AIChEJ. 43 (1997) 1797–1812.</p><p> [9] Y. Yan, M.E. Davis, G.R. Gavalas, Preparation of highlyselective zeolite ZSM-5 me
43、mbranes by a post-syntheticcoking treatment, J. Membr. Sci. 123 (1997) 95–103.</p><p> [10] J. Coronas, R.D. Noble, J.L. Falconer, Separation of C4 andC6 isomers in ZSM-5 tubular membranes, Ind. Eng. Chem.R
44、es. 37 (1998) 166–176.</p><p> [11] J.M. van de Graaf, F. Kapteijn, J.A. Moulijn, Effect ofoperating conditions and membrane quality on the separationperformance of composite silicalite-1 membrane, Ind. Eng
45、.Chem. Res. 10 (1998) 4071–4078.</p><p> [12] K. Keizer, A.J. Burggraaf, Z.A.E.P. Vroon, H. Verweij, Twocomponent permeation through thin zeolite MFI membranes,J. Membr. Sci. 147 (1998) 159–172.</p>
46、<p> [13] J.M. van de Graaf, F. Kaptaijn, J.A. Moulijn, Methodologicaland operational aspects of permeation measurements onsilicalite-1 membranes, J. Membr. Sci. 144 (1998) 87–104.</p><p> [14] T. San
47、o, M. Hasegawa, Y. Kawakami, Y. Kiyozumi, H.Yanagishita, D. Kitamoto, F. Mizukami, Potentials of silicalitemembranes for the separation of alcohol/water mixtures, Stud.Surf. Sci. Catal. 84 (1994) 1175–1182.</p>&l
48、t;p> [15] T. Sano, H. Yanagisita, Y. Kiyozumi, F. Mizukami, K. Haraya, Separation of ethanol/water mixture by silicalite membraneon pervaporation, J. Membr. Sci. 95 (1994) 221.</p><p> [16] H. Kita, Per
49、vaporation through zeolite membranes, Maku(Membrane) 20 (1995) 169–182.</p><p> [17] H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, K. Okamoto,Synthesis of a zeolite NaA membrane for pervaporation ofwater/organi
50、c liquid mixtures, J. Mater. Sci. Lett. 14 (1995)206–208.</p><p> [18] M. Nomura, T. Yamaguchi, S. Nakao, Ethanol/water transportthrough silicalite membranes, J. Membr. Sci. 144 (1998) 161–171.</p>&
51、lt;p> [19] Q. Liu, R.D. Noble, J.L. Falconer, H.H. Funke, Organics/waterseparation by pervaporation with a zeolite membrane, J.Membr. Sci. 117 (1996) 163–174.</p><p> [20] J.F. Smetana, J.L. Falconer, R
52、.D. Noble, Separation of methylethyl ketone from water by pervaporation using a silicalitemembrane, J. Membr. Sci. 114 (1996) 127–130.</p><p> [21] C.D. Baertsch, H.H. Funke, J.L. Falconer, R.D. Noble, Perm
53、eation of aromatic hydrocarbon vapors through silicalitezeolitemembranes, J. Phys. Chem. 100 (1996) 7676–7679.</p><p> [22] N. Nishiyama, K. Ueyama, M. Matsukata, Synthesis of defectfreezeolite-alumina comp
54、osite membranes by a vapor-phasetransport method, Microporous Mater. 7 (1996) 299–308.</p><p> [23] N. Nishiyama, T. Matsufuji, K. Ueyama, M. Matsukata, FERmembrane synthesized by vapor-phase transport meth
55、od: itsstructure and separation characteristics, Microporous Mater.12 (1997) 293–303.</p><p> [24] N. Nishiyama, K. Ueyama, M. Matsukata, Synthesis of FERmembrane on an alumina support its separation proper
56、ties,Stud. Surf. Sci. Catal. 105 (1996) 2195–2202.</p><p> [25] N. Nishiyama, Synthesis of zeolitic membranes by vaporphasetransport method and their separation properties, Ph.D.Thesis, Osaka University, 19
57、97.</p><p> [26] N. Nishiyama, K. Ueyama, M. Matsukata, A defect-freemordenite membrane synthesized by vapor phase transportmethod, J. Chem. Soc., Chem. Commun. (1995) 1967–1968.</p><p> [27]
58、M. Matsukata, N. Nishiyama, K. Ueyama, Crystallization ofFER and MFI zeolites by a vapor-phase transport method,Microporous Mater. 7 (1996) 109–117.</p><p> [28] N. Nishiyama, K. Ueyama, M. Matsukata, Gas p
59、ermeationthrough zeolite-alumina composite membranes, AIChE J.43 (11A) (1997) 2724–2730.</p><p> [29] H. Karsli, A. Culfaz, H. Yucel, Sorption properties ofsilicalite-1: influence of sorption history on sor
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--氣相轉(zhuǎn)移法合成mfi型沸石分子篩分離丁烷和二甲苯異構(gòu)體
- 外文翻譯--氣相轉(zhuǎn)移法合成mfi型沸石分子篩分離丁烷和二甲苯異構(gòu)體
- 外文翻譯--氣相轉(zhuǎn)移法合成MFI型沸石分子篩分離丁烷和二甲苯異構(gòu)體.doc
- 外文翻譯--氣相轉(zhuǎn)移法合成mfi型沸石分子篩分離丁烷和二甲苯異構(gòu)體(英文)
- 外文翻譯--氣相轉(zhuǎn)移法合成mfi型沸石分子篩分離丁烷和二甲苯異構(gòu)體(譯文)
- 外文翻譯--氣相轉(zhuǎn)移法合成MFI型沸石分子篩分離丁烷和二甲苯異構(gòu)體.doc
- 二甲苯異構(gòu)體滲透汽化分離膜的制備及其性能研究.pdf
- 二甲苯異構(gòu)體分離用βcd交聯(lián)物pva共混膜的制備
- 二甲苯異構(gòu)體分離用β-CD交聯(lián)物-PVA共混膜的制備.pdf
- 高純度十四烷基對二甲苯磺酸鈉異構(gòu)體合成與性能研究.pdf
- 高效液相色譜分離苯、二甲苯
- 微波法對吸附分離二甲苯的分子篩改性條件研究.pdf
- 二甲苯同分異構(gòu)體二元系固-液相平衡研究.pdf
- 不同載體上MFI型沸石分子篩膜的合成.pdf
- PAAS-Silicalite-1雜化膜的二甲苯異構(gòu)體滲透氣化分離性能的研究.pdf
- 二甲苯吸附法廢氣處理
- 二甲苯吸附法廢氣處理
- gbt 23990-2009 涂料中苯、甲苯、乙苯和二甲苯含量的測定 氣相色譜法
- 對二甲苯
- 二甲苯.doc
評論
0/150
提交評論