版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 附錄A</b></p><p> A matter of light:PWM dimming </p><p> By Sameh Sarhan and Chris Richardson, National Semiconductor </p><p> Whether you drive LEDs with
2、 a buck, boost, buck-boost or linear regulator, the common thread is drive circuitry to control the light output. A few applications are as simple as ON and OFF, but the greater number of applications call for dimming th
3、e output between zero and 100 percent, often with fine resolution. The designer has two main choices: adjust the LED current linearly (analog dimming), or use switching circuitry that works at a frequency high enough for
4、 the eye to average the light out</p><p> Figure 1: LED driver using PWM dimming, with waveforms.</p><p> PWM dimming preferred </p><p> Analog dimming is often simpler to implem
5、ent. We vary the output of the LED driver in proportion to a control voltage. Analog dimming introduces no new frequencies as potential sources of EMC/EMI. However, PWM dimming is used in most designs, owing to a fundame
6、ntal property of LEDs: the character of the light emitted shifts in proportion to the average drive current. For monochromatic LEDs, the dominant wavELength changes. For white LEDs, the correlated color temperature (CCT)
7、 changes. It's diff</p><p> Most white LEDs consist of a die that emits photons in the blue spectrum, which strike a phosphor coating that in turn emits photons over a broad range of visible light. At l
8、ow currents the phosphor dominates and the light tends to be more yellow. At high currents the blue emission of the LED dominates, giving the light a blue cast, leading to a higher CCT. In applications with more than one
9、 white LED, a difference in CCT between two adjacent LEDs can be both obvious and unpleasant. That concept</p><p> LED manufacturers specify a certain drive current in the electrical characteristics tables
10、of their products, and they guarantee the dominant wavelength or CCT only at those specified currents. Dimming with PWM ensures that the LEDs emit the color that the lighting designer needs, regardless of the intensity.
11、Such precise control is particularly important in RGB applications where we blend light of different colors to produce white. </p><p> From the driver IC perspective, analog dimming presents a serious chall
12、enge to the output current accuracy. Almost every LED driver uses a resistor of some type in series with the output to sense current. The current-sense voltage, VSNS, is selected as a compromise to maintain low Power dis
13、sipation while keeping a high signal-to-noise ratio (SNR). Tolerances, offsets, and delays in the driver introduce an error that remains relatively fixed. To reduce output current in a closed-loop system, VSNS</p>
14、<p> Dimming frequency vs. contrast ratio </p><p> The LED driver's finite response time to a PWM dimming signal creates design issues. There are three main types of delay (Fig. 2). The longer th
15、ese delays, the lower the achievable contrast ratio (a measure of control over lighting intensity). </p><p> Figure 2: Dimming delays.</p><p> As shown, tn represents the propagation delay fro
16、m the time logic signal VDIM goes high to the time that the LED driver begins to increase the output current. In addition, tsu is the time needed for the output current to slew from zero to the target level, and tsn is t
17、he time needed for the output current to slew from the target level back down to zero. In general, the lower the dimming frequency, fDIM, the higher contrast ratio, as these fixed delays consume a smaller portion of the
18、dimming per</p><p> Contrast ratio is typically expressed as the inverse of the minimum on-time, i.e., </p><p> CR = 1 / tON-MIN : 1 </p><p> where tON-MIN = tD + tSU. Applicatio
19、ns in machine vision and industrial inspection often require much higher PWM dimming frequencies because the high-speed cameras and sensors used respond much more quickly than the human eye. In such applications the goal
20、 of rapid turn-on and turn-off of the LED light source is not to reduce the average light output, but to synchronize the light output with the sensor or camera capture times. </p><p> Dimming with a switchi
21、ng regulator </p><p> Switching regulator-based LED drivers require special consideration in order to be shut off and turned on at hundreds or thousands of times per second. Regulators designed for standard
22、 power supplies often have an enable pin or shutdown pin to which a logic-level PWM signal can be applied, but the associated delay, tD, is often quite long. This is because the silicon design emphasizes low shutdown cur
23、rent over response time. Dedicated switching regulations for driving LEDs will do the opposite, </p><p> Optimizing light control with PWM requires minimum slew-up and slew-down delays not only for best con
24、trast ratio, but to minimize the time that the LED spends between zero and the target level (where the dominant wavelength and CCT are not guaranteed). A standard switching regulator will have a soft-start and often a so
25、ft-shutdown, but dedicated LED drivers do everything within their control to reduce these slew rates. Reducing tSU and tSN involves both the silicon design and the topology of swi</p><p> Buck regulators ar
26、e superior to all other switching topologies with respect to fast slew rates for two distinct reasons. First, the buck regulator is the only switching converter that delivers power to the output while the control switch
27、is on. This makes the control loops of buck regulators with voltage-mode or current-mode PWM (not to be confused with the dimming via PWM) faster than the boost regulator or the various buck-boost topologies. Power deliv
28、ery during the control switch's on-time al</p><p> Faster than the enable pin </p><p> Even a pure hysteretic buck regulator without an output capacitor will not be capable of meeting the
29、requirements of some PWM dimming systems. These applications need high PWM dimming frequency and high contrast ratio, which in turn requires fast slew rates and short delay times. Along with machine vision and industrial
30、 inspection, examples of systems that need high performance include backlighting of LCD panels and video projection. In some cases the PWM dimming frequency must be pushed to beyo</p><p> Consider a fast bu
31、ck regulator with no output capacitor. The delays in turning the output current on and off come from the IC's propagation delay and the physical properties of the output inductor. For truly high speed PWM dimming, bo
32、th must be bypassed. The best way to accomplish this is by using a power switch in parallel with the LED chain (Fig. 3). To turn the LEDs off, the drive current is shunted through the switch, which is typically an n-MOSF
33、ET. The IC continues to operate and the induct</p><p> Figure 3: Shunt FET circuit, with waveforms.</p><p> Dimming with a shunt FET causes rapid shifts in the output voltage, to which the IC&
34、#39;s control loop must respond in an attempt to keep the output current constant. As with logic-pin dimming, the faster the control loop, the better the response, and buck regulators with hysteretic control provide the
35、best response. </p><p> Fast PWM with boost and buck-boost </p><p> Neither the boost regulator nor any of the buck-boost topologies are well suited to PWM dimming. That's because in the c
36、ontinuous conduction mode (CCM), each one exhibits a right-half plane zero, which makes it difficult to achieve the high control loop bandwidth needed in clocked regulators. The time-domain effects of the right-half plan
37、e zero also make it much more difficult to use hysteretic control for boost or buck-boost circuits. In addition, the boost regulator cannot tolerate an output v</p><p> Figure 4: Boost regulator with series
38、 DIM switch.</p><p> LED current can be shut off immediately. On the other hand, special consideration must be given to the system response. Such an open circuit is in effect a fast, extreme unloading trans
39、ient that also disconnects the feedback loop and will cause the regulator's output voltage to rise without bound. Clamping circuits for the output and/or the error amplifier are required to prevent failure due to ove
40、r-voltage. These clamps are difficult to realize with external circuitry, hence series FET dimming </p><p> In summary, proper control of LED lighting requires careful attention right from the start of the
41、design process. The more sophisticated the light source, the more likely that PWM dimming will be used. This in turn requires the system designer to carefully consider the LED driver topology. Buck regulators offer many
42、advantages for PWM dimming. If the dimming frequency must be high, or the slew rates must be fast, or both, then the buck regulator is the way to go. </p><p> About the authors </p><p> Sameh
43、Sarhan is a staff applications engineer for the Medium Voltage/High Voltage Power Management group in Santa Clara, CA. He has been involved with power electronics in various forms since 1998, having worked for FRC Corp.
44、and Vicor Corp. His experience includes the design of hard/soft switching power supplies from a few watts to 600 watts. Sameh received a bachelor's degree in electronics engineering in 1996 from Cairo University (Egy
45、pt). </p><p> Chris Richardson is an applications engineer in the Power Management Products group, Medium and High Voltage Division. His responsibilities are divided between lab work, bench evaluation of ne
46、w ICs, written work such as datasheets and applications notes, and training for field engineers and seminars. Since joining National Semiconductor in 2001, Chris has worked mainly on synchronous buck controllers and regu
47、lators. In the last three years he has focused on products for the emerging high brightn</p><p> Source: National Semiconductor Corporation</p><p><b> 附錄B</b></p><p>
48、 LED照明知識:PWM調(diào)光</p><p> 不管你用Buck, Boost, Buck-Boost還是線性調(diào)節(jié)器來驅(qū)動LED,它們的共同思路都是用驅(qū)動電路來控制光的輸出。一些應(yīng)用只是簡單地來實現(xiàn)“開”和“關(guān)”地功能,但是更多地應(yīng)用需求是要從0到100%調(diào)節(jié)光的亮度,而且經(jīng)常要有很高的精度。設(shè)計者主要有兩個選擇:線性調(diào)節(jié)LED電流(模擬調(diào)光),或者使用開關(guān)電路以相對于人眼識別力來說足夠高的頻率工作來改變光輸出
49、的平均值(數(shù)字調(diào)光)。使用脈沖寬度調(diào)制(PWM)來設(shè)置周期和占空度(圖1)可能是最簡單的實現(xiàn)數(shù)字調(diào)光的方法,并且Buck調(diào)節(jié)器拓撲往往能夠提供一個最好的性能。 </p><p> 圖1:使用PWM調(diào)光的LED驅(qū)動及其波形。</p><p><b> 推薦的PWM調(diào)光 </b></p><p> 模擬調(diào)光通??梢院芎唵蔚膩韺崿F(xiàn)。我們可以通過
50、一個控制電壓來成比例地改變LED驅(qū)動的輸出。模擬調(diào)光不會引入潛在的電磁兼容/電磁干擾(EMC/EMI)頻率。然而,在大多數(shù)設(shè)計中要使用PWM調(diào)光,這是由于LED的一個基本性質(zhì):發(fā)射光的特性要隨著平均驅(qū)動電流而偏移。對于單色LED來說,其主波長會改變。對白光LED來說,其相關(guān)顏色溫度(CCT)會改變。對于人眼來說,很難察覺到紅、綠或藍LED中幾納米波長的變化,特別是在光強也在變化的時候。但是白光的顏色溫度變化是很容易檢測的。 </p
51、><p> 大多數(shù)LED包含一個發(fā)射藍光譜光子的區(qū)域,它透過一個磷面提供一個寬幅可見光。低電流的時候,磷光占主導(dǎo),光趨近于黃色。高電流的時候,LED藍光占主導(dǎo),光呈現(xiàn)藍色,從而達到了一個高CCT。當(dāng)使用一個以上的白光LED的時候,相鄰LED的CCT的不同會很明顯也是不希望發(fā)生的。同樣延伸到光源應(yīng)用里,混合多個單色LED也會存在同樣的問題。當(dāng)我們使用一個以上的光源的時候,LED中任何的差異都會被察覺到。 </p
52、><p> LED生產(chǎn)商在他們的產(chǎn)品電氣特性表中特別制定了一個驅(qū)動電流,這樣就能保證只以這些特定驅(qū)動電流來產(chǎn)生的光波長或CCT。用PWM調(diào)光保證了LED發(fā)出設(shè)計者需要的顏色,而光的強度另當(dāng)別論。這種精細控制在RGB應(yīng)用中特別重要,以混合不同顏色的光來產(chǎn)生白光。 </p><p> 從驅(qū)動IC的前景來看,模擬調(diào)光面臨著一個嚴峻的挑戰(zhàn),這就是輸出電流精度。幾乎每個LED驅(qū)動都要用到某種串聯(lián)電阻
53、來辨別電流。電流辨別電壓(VSNS)通過折衷低能耗損失和高信噪比來選定。驅(qū)動中的容差、偏移和延遲導(dǎo)致了一個相對固定的誤差。要在一個閉環(huán)系統(tǒng)中降低輸出電流就必須降低VSNS。這樣就會反過來降低輸出電流的精度,最終,輸出電流無法指定、控制或保證。通常來說,相對于模擬調(diào)光,PWM調(diào)光可以提高精度,線性控制光輸出到更低級。 </p><p> 調(diào)光頻率VS對比度 </p><p> LED驅(qū)動
54、對PWM調(diào)光信號的不可忽視的回應(yīng)時間產(chǎn)生了一個設(shè)計問題。這里主要有三種主要延遲(圖2)。這些延遲越長,可以達到的對比度就越低(光強的控制尺度)。 </p><p><b> 圖2:調(diào)光延遲。</b></p><p> 如圖所示,tn表示從時間邏輯信號VDIM提升到足以使LED驅(qū)動開始提高輸出電流的時候的過渡延遲。另外,tsu輸出電流從零提升到目標(biāo)級所需要的時間,相
55、反,tsn是輸出電流從目標(biāo)級下降到零所需要的時間。一般來說,調(diào)光頻率(fDIM)越低,對比度越高,這是因為這些固定延遲消耗了一小部分的調(diào)光周期(TDIM)。fDIM的下限大概是120Hz,低于這個下限,肉眼就不會再把脈沖混合成一個感覺起來持續(xù)的光。另外,上限是由達到最小對比度來確定的。 </p><p> 對比度通常由最小脈寬值的倒數(shù)來表示: </p><p> CR = 1 / tO
56、N-MIN : 1 </p><p> 這里tON-MIN = tD + tSU。在機器視覺和工業(yè)檢驗應(yīng)用中常常需要更高的PWM調(diào)光頻率,因為高速相機和傳感器需要遠遠快于人眼的反應(yīng)時間。在這種應(yīng)用中,LED光源的快速開通和關(guān)閉的目的不是為了降低輸出光的平均強度,而是為了使輸出光與傳感器和相機時間同步。</p><p><b> 用開關(guān)調(diào)節(jié)器調(diào)光 </b></
57、p><p> 基于開關(guān)調(diào)節(jié)器的LED驅(qū)動需要一些特別考慮,以便于每秒鐘關(guān)掉和開啟成百上千次。用于通常供電的調(diào)節(jié)器常常有一個開啟或關(guān)掉針腳來供邏輯電平PWM信號連接,但是與此相關(guān)的延遲(tD)常常很久。這是因為硅設(shè)計強調(diào)回應(yīng)時間中的低關(guān)斷電流。而驅(qū)動LED的專用開關(guān)調(diào)節(jié)則相反,當(dāng)開啟針腳為邏輯低以最小化tD時,內(nèi)部控制電路始終保持開啟,然而當(dāng)LED關(guān)斷的時候,控制電流卻很高。 </p><p>
58、; 用PWM來優(yōu)化光源控制需要最小化上升和下降延遲,這不僅是為了達到最好的對比度,而且也為了最小化LED從零到目標(biāo)電平的時間(這里主導(dǎo)光波長和CCT不能保證)。標(biāo)準(zhǔn)開關(guān)調(diào)節(jié)器常常會有一個緩開和緩關(guān)的過程,但是LED專用驅(qū)動可以做所有的事情,其中包括降低信號轉(zhuǎn)換速率的控制。降低tSU 和 tSN要從硅設(shè)計和開關(guān)調(diào)節(jié)器拓撲兩方面入手。 </p><p> Buck調(diào)節(jié)器能夠保持快速信號轉(zhuǎn)換而又優(yōu)于所有其它開關(guān)拓撲
59、主要有兩個原因。其一,Buck調(diào)節(jié)器是唯一能夠在控制開關(guān)打開的時候為輸出供電的開關(guān)變換器。這使電壓模式或電流模式PWM(不要與PWM調(diào)光混淆)的Buck調(diào)節(jié)器的控制環(huán)比Boost調(diào)節(jié)器或者各種Buck-Boost拓撲更快??刂崎_關(guān)開啟的過程中,電力傳輸同樣可以輕易地適應(yīng)滯環(huán)控制,甚至比最好的電壓模式或電流模式的控制環(huán)還要快。其二,Buck調(diào)節(jié)器的電導(dǎo)在整個轉(zhuǎn)換周期中連在了輸出上。這樣保證了一個持續(xù)輸出電流,也就是說,輸出電容被刪減掉。沒
60、有了輸出電容,Buck調(diào)節(jié)器成了一個真正的高阻抗電流源,它可以很快達到輸出電壓。Cuk和zeta轉(zhuǎn)換器可以提供持續(xù)的輸出電感,但是當(dāng)更慢的控制環(huán)(和慢頻)被納入其中的時候,它們會落后。 </p><p><b> 比開啟針腳更快 </b></p><p> 即使是一個單純的無輸出電容的滯后Buck調(diào)節(jié)器,也不能滿足某些PWM調(diào)光系統(tǒng)的需要。這些應(yīng)用需要高PWM調(diào)光
61、頻率和高對比度,這就分別需要快速信號轉(zhuǎn)換率和短延遲時間。對于機器視覺和工業(yè)檢驗來說,系統(tǒng)實例需要很高的性能,包括LCD板的背光和投影儀。在某些應(yīng)用中,PWM調(diào)光頻率必須超過音頻寬,達到25kHz或者更高。當(dāng)總調(diào)光周期降低到微秒級時,LED電流總上升和下降時間(包括傳輸延遲),必須降低到納秒級。 </p><p> 讓我們來看看一個沒有輸出電容的快速Buck調(diào)節(jié)器。打開和關(guān)斷輸出電流的延遲來源于IC的傳輸延遲和輸
62、出電感的物理性質(zhì)。對于真正的高速PWM調(diào)光,這兩個問題都需要解決。最好的方法就是要用一個電源開關(guān)與LED鏈并聯(lián)(圖3)。要關(guān)掉LED,驅(qū)動電流要經(jīng)過開關(guān)分流,這個開關(guān)就是一個典型的n-MOSFET。IC持續(xù)工作,電感電流持續(xù)流動。這個方法的主要缺點是當(dāng)LED關(guān)閉的時候,電量被浪費掉了,甚至在這個過程中,輸出電壓下降到電流偵測電壓。 </p><p> 圖3:分流電路及其波形</p><p&g
63、t; 用一個分流FET調(diào)光會引起輸出電壓快速偏移,IC的控制環(huán)必須回應(yīng)保持常電流的請求。就像邏輯針腳調(diào)光一樣,控制環(huán)越快,回應(yīng)越好,帶有滯環(huán)控制的Buck調(diào)節(jié)器就會提供最好的回應(yīng)。 </p><p> 用Boost和Buck-Boost的快速PWM </p><p> Boost調(diào)節(jié)器和任何Buck-Boost拓撲都不適合PWM調(diào)光。這是因為在持續(xù)傳導(dǎo)模式中(CCM),每個調(diào)節(jié)器都展
64、示了一個右半平面零,這就使它很難達到時鐘調(diào)節(jié)器需要的高控制環(huán)帶寬。右半平面零的時域效應(yīng)也使它更難在Boost或者Buck-Boost電路中使用滯后控制。另外,Boost調(diào)節(jié)器不允許輸出電壓下降到輸入電壓以下。這個條件需要一個輸入端短電路并且使利用一個并聯(lián)FET實現(xiàn)調(diào)光變得不可能。。在Buck-Boost拓撲中,并聯(lián)FET調(diào)光仍然不可能或者不切實際,這是因為它需要一個輸出電容(SEPIC,Buck-Boost和flyback),或者輸出短
65、電路(Cuk和zeta)中的未受控制得輸入電感電流。當(dāng)需要真正快速PWM調(diào)光的時候,最好的解決方案是一個二級系統(tǒng),它利用一個Buck調(diào)節(jié)器作為第二LED驅(qū)動級。如果空間和成本不允許的時候,下一個最好的原則就是一個串聯(lián)開關(guān)(圖4)。 </p><p> 圖4:帶有串聯(lián)DIM開關(guān)的Boost調(diào)節(jié)器</p><p> LED電流可以被立即切斷。另外,必須要特別考慮系統(tǒng)回應(yīng)。這樣一個開路事實上
66、是一個快速外部退荷暫態(tài),它斷開了反饋環(huán),引起了調(diào)節(jié)器輸出電壓的無界上升。為了避免因為過壓失敗,我們需要輸出鉗制電路和/或誤差放大器。這種鉗制電路很難用外部電路實現(xiàn),因此,串聯(lián)FET調(diào)光只能用專用Boost/Buck-Boost LED驅(qū)動IC來實現(xiàn)。 </p><p> 總而言之,LED光源的單純控制需要設(shè)計的初始階段就要非常小心。光源越復(fù)雜,就越要用PWM調(diào)光。這就需要系統(tǒng)設(shè)計者謹慎思考LED驅(qū)動拓撲。Buc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- led照明知識
- 照明知識
- 燈具照明知識
- 具有PWM調(diào)光功能的無電解電容LED照明驅(qū)動研究.pdf
- 智能調(diào)光調(diào)色溫LED照明.pdf
- 探討隧道照明中l(wèi)ed調(diào)光控制的應(yīng)用
- 高速公路隧道led照明調(diào)光技術(shù)應(yīng)用
- 照明LED的有線-無線調(diào)光技術(shù)研究.pdf
- 基于PWM的無級調(diào)光LED驅(qū)動電路設(shè)計.pdf
- 雙通道PWM調(diào)光的LED驅(qū)動電路設(shè)計.pdf
- LED照明調(diào)光驅(qū)動電源的研究與設(shè)計.pdf
- 高精度可調(diào)光LED照明驅(qū)動芯片設(shè)計研究.pdf
- led照明智能調(diào)光技術(shù)應(yīng)用于公路隧道
- LED照明驅(qū)動及自適應(yīng)調(diào)光技術(shù)研究.pdf
- 外文翻譯---led在景觀照明中的應(yīng)用
- 照明知識-電光源名詞定義及英文對照
- 基于LED照明的可控硅調(diào)光兼容性研究.pdf
- 公路隧道LED照明配光及調(diào)光系統(tǒng)研究.pdf
- led照明基礎(chǔ)知識理論
- 基于ZigBee智能照明LED調(diào)光調(diào)色的關(guān)鍵技術(shù)研究.pdf
評論
0/150
提交評論