版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 本科畢業(yè)設(shè)計外文翻譯</p><p><b> 刀具成本的檢測</b></p><p> 院(系、部)名 稱 : 機電工程學院 </p><p> 專 業(yè) 名 稱: 機械設(shè)計制造及其自動化 </p><p> 學 生 姓 名: 武 昭
2、 </p><p> 學 生 學 號: 1111111111 </p><p> 指 導 教 師: 五釗 </p><p> 2010 年12月28日</p><p><b> 刀具成本的檢測</b></p><p
3、> 加工成本是加工工具成本和切削成本的總和。機床成本由閑置費用,加工費用和工具改變費用組成。當改變切削速度的情況下閑置費用保持不變。從機械數(shù)據(jù)手冊[24]上表明機械設(shè)備成本的公式如下:</p><p> 為了優(yōu)化切割條件,必須確定切割深度大小和切割速度的數(shù)學關(guān)系式.在 我們學習的泰勒模型將被用于確定切削速度對切削刀具壽命的影響:</p><p> VT" =C ---
4、-----------------3-2</p><p><b> V=切削速度</b></p><p> T=切割時產(chǎn)生的標準金額側(cè)翼磨損(例如.0.2毫米)</p><p> N和C都是由被使用的材料或者工作條件所決定的常數(shù). ,</p><p> 為了確定進給時的常數(shù)‘n’和‘C’我們以4140鋼在實驗的條
5、件下進行研究,以LogV和LogT為坐標進行作圖,畫出了三種類型的進給圖形,圖3-8A、圖3-8B是對KC313為研究對象在干和濕的條件下分別做出的圖形,圖3-9A和圖3-9B是對KC732為研究對象在干和濕兩種狀態(tài)下所做的圖形,另外,圖3-10A、圖3-10B是以KC5010為研究對象在干和濕兩種狀況下所做的圖形. 從上述的圖形可以看出不管測量的次數(shù)有多少,其結(jié)果都是呈直線分布的形式下降,從曲線我們能夠看出,在相同的切削速度的條件下,
6、增加磨損標準和對KC313和KC732使用冷卻液都可以提高工具的使用壽命。然而,對于KC5010來說提高磨損標準和降低使用冷卻液對提高KC5010工具壽命有好處。冷卻乳液的這種抑制作用和對磨損機構(gòu)的效果我們把它列入到了第五章。以及其他類型的磨損也將插入到那里研究。金屬的切削研究主要集中在刀具的磨損、刀具的壽命和磨損機理。不過,未來的研究應該更加關(guān)注其他因素的影響:</p><p> 通過工廠體系建立磨損標準,基
7、本的刀具磨損開端取決于工廠的產(chǎn)品。 </p><p> 使用刀具的類型,向碳素鋼刀具和高速切削刀具。 </p><p> 這對于研究在干和濕的條件下研究影響刀具壽命的因素常數(shù)(C,n)是有用的。這將提高刀具的壽命,因為它也將影響到切削的經(jīng)濟性[24]。</p><p> 為了確定切削液在選擇磨損標準時所起的作用,不同的磨損標準和經(jīng)常的進給成本在HMS下必須被研
8、究。不同切削標準的刀具壽命常數(shù)在表(3-7)所列的表格中被摘錄和劃分。從圖3-8A/B。圖3-9A/B、圖3-10A/B的常數(shù)(C,n)的價值在表3-8和表3-9中被反映出來。在以后的圖中說明這些參數(shù)和磨損標準的關(guān)系。圖3-11描述了‘n’和磨損標準的關(guān)系。當提高n時磨損標準的變化。</p><p> (a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)</p>&
9、lt;p> (b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 圖3-8 KC313在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p>
10、 (a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)</p><p> (b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 圖3-9 KC732在不同的磨損標準下由時間(T)和速度(V)為坐標所做的圖形(a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件)(b) 以Lo
11、g(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件) </p><p> (b)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 圖3-10 KC5010在不同的磨損標準下由時間(T)和速度(V)
12、為坐標所做的圖形 (a)以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(干條件) (b) 以Log(T)和Log(V)為坐標在不同的磨損標準的情況下所做的圖形(濕條件)</p><p> 表3-7 刀具壽命常數(shù)的范圍劃分</p><p> 表3-8 在三種刀具材料下由‘C’和‘n’所做的磨損標準圖(干條件下)</p><p> 表3-9
13、在三種刀具材料下由‘C’和‘n’所做的磨損標準圖(濕條件下)</p><p> 在這兩種條件下價值能夠得到提高,另外,濕潤條件‘n’的價值要比干燥條件‘n’的價值低,直到磨損標準達到0.38以后,干燥條件的‘n’開始大于濕潤條件的 ‘n’。圖3-11B可以看出‘C’在磨損標準所做的圖形中,在干和濕的條件下磨損標準提高時 ‘C也隨之提高。然而,濕的條件下‘C’的價值要比干的條件下高。這證明在整個切削過程中通過使用
14、冷卻液提高刀具的壽命和提高磨損標準都可以一直的保護切削刀具材料。</p><p> 接下來,圖3-12A描述了KC732材料在干和濕的條件下‘n’與磨損標準之間的關(guān)系。磨損價值隨著‘n’的提高而提高。此外,濕曲線要比干曲線高。圖3-12B描述的一個常數(shù)‘C’和磨損價值的比例關(guān)系。然而,濕條件的‘C’曲線比干條件下的曲線高,這表面對于材料KC732來說使用冷卻液是有益處的。更為重要的這有利于提高磨損標準?!瓹’的
15、價值越高,刀具的使用壽命也就變的越高。圖3-13A表明冷卻液對刀具性能的影響。因此。‘n’越高,刀具的使用壽命就越低。圖3-13B可以看出通過使用冷卻液和提高磨損價值可以降低‘C’,這說明刀具在濕潤的條件下,刀具的使用壽命比較短。之前研究的都是材料KC313和材料KC732,提高‘n’就意味著刀具的壽命將被縮短。然而。大幅度的提高濕曲線‘C’超過干曲線‘C’的補償下降,KC313和KC732的使用壽命將延長。與次相反。KC5010對此正
16、好相反。圖3-14A和圖3-14B是沒有被碳包裹的情況(KC313)。他表面了在干和濕的切削條件下不同磨損標準的切削速度的價值的關(guān)系。</p><p> n與磨損標準為坐標建立的關(guān)系圖(干和濕條件下) </p><p> C與磨損標準為坐標建立的關(guān)系圖(干和濕條件下) </p><p> 圖3-11 KC313的以泰勒常數(shù)與磨損標準為坐標建立的關(guān)系圖(a)n與
17、磨損標準為坐標建立的關(guān)系圖(干和濕條件下)(b) C與磨損標準為坐標建立的關(guān)系圖(干和濕條件下)</p><p> n與磨損標準為坐標建立的關(guān)系圖(干和濕條件下) </p><p> C與磨損標準為坐標建立的關(guān)系圖(干和濕條件下) </p><p> 圖3-12 KC732的以泰勒常數(shù)與磨損標準為坐標建立的關(guān)系圖(a)n與磨損標準為坐標建立的關(guān)系圖(干和濕條件
18、下)(b) C與磨損標準為坐標建立的關(guān)系圖(干和濕條件下)</p><p> (a) n與磨損標準為坐標建立的關(guān)系圖(干和濕條件下)</p><p> (b)C與磨損標準為坐標建立的關(guān)系圖(干和濕條件下)</p><p> 圖3-13 KC5010的以泰勒常數(shù)與磨損標準為坐標建立的關(guān)系圖(a)n與磨損標準為坐標建立的關(guān)系圖(干和濕條件下)(b) C與磨損標準為
19、坐標建立的關(guān)系圖(干和濕條件下).</p><p> 這兩個條件表明當磨損標準增加的同時機床的成本下降。盡管如此,當成本增加的速度達到再增加就叨叨最佳時。圖3-15A和圖3-15B是由磨損標準在(0.4-0.6毫米)時,干和濕條件下經(jīng)濟性的比較。干切削的最佳切削速度是90米/分而濕切削的最佳切削速度是120米/分。</p><p> 在圖3-16A和圖3-16B中列出了在干和濕的條件下
20、含有KC732涂層的速度與成本的函數(shù)關(guān)系。再次,當磨損標準增加的時候,成本下降。此外,干切削的最佳切削速度是260米/分,而濕切削的最佳切削速度是360米/分。這表面冷卻液對這種材料很重要,它不僅可以降低成本,而且還可以提高生產(chǎn)率。</p><p> 圖3-17A和圖3-17B概括了在干和濕的條件下,對涂有TIALN的材料KC5010的切削速度和成本之間的關(guān)系。當切削速度提高時,切削成本也隨之提高,當磨損標準提
21、高,切削成本下降。在這兩種切削條件下,最佳的切削成本是在速度最低達到210米/分的時候。</p><p> 圖3-18A和圖3-18B描述的是在不同的磨損標準和不同的切削條件下KC732和KC5010的切削成本的比較。它可以明確地反映出對于KC732來說,冷卻液可以延長刀具的壽命。切削速度從260米/分到360米/分為最佳的切削速度。不過,對于KC5010來說在高速加工的情況下冷卻液可以使它的刀具壽命降低而且使
22、切削成本提高。</p><p> 從上面這些數(shù)據(jù)可以看出對于KC732來說,在速度為210米/分-310米/分的速度范圍內(nèi)干切削要比濕切削的經(jīng)濟效率高。當速度達到310米/分是效率最高。對于切削材料KC5010來說在干條件下速度為210米/分時切削成本有效。因此,不管KC732的成本,它的磨損都遠遠的超過沒有處理的KC313和KC5010。表3-10總結(jié)了干和濕條件下的最佳切削速度和最佳的切削成本。</p
23、><p> 圖3-19A和圖3-19B列出的是沒有經(jīng)過處理的KC313在干和濕的條件下,不同的切削速度下切削成本和磨損標準之間的關(guān)系。圖3-20A和圖3-20B列出了處理后的KC732在干和濕的條件下的磨損標準函數(shù)。圖3-21A和圖3-21B列除了KC5010在干和濕的條件下的磨損標準函數(shù)。曲線表面在切削速度相同的條件下,增加磨損標準,切削成本下降。</p><p> 在圖3-22A表明在
24、濕的條件下改變KC313的性能要比在干的條件下改變其性能使刀具的壽命降低。在圖3-22B可以看出KC732和KC5010經(jīng)過表面處理后的結(jié)果和側(cè)面的磨損情況。這清楚的表明在濕潤的條件下KC372表面涂TIN-TICN-TIN要比在干的條件下效果明顯。在濕的條件下對KC5010表面涂TIALN會減少它的刀具壽命。最后,KC732在所有條件下它的切削性能都要遠遠的超過KC5010。</p><p> 在不同磨損標準
25、下,切削速度與成本的關(guān)系圖干切削條件下) </p><p> 在不同磨損標準下,切削速度與成本的關(guān)系圖(濕切削條件下) </p><p> 圖3-14 KC313的速度與切削成本的變化 (a)在不同磨損標準下,切削速度與成本的關(guān)系圖(干切削條件下) (b) 在不同磨損標準下,切削速度與成本的關(guān)系圖(濕切削條件下)</p><p> 在磨損標準為0.4毫米時,成
26、本與切削速度的關(guān)系圖 </p><p> 在磨損標準為0.6毫米時,成本與切削速度的關(guān)系圖 </p><p> 圖3-15 以成本和速度為坐標軸,在干和濕兩種情況下分別在兩種磨損標準下的比較。 (a)在磨損標準為0.4毫米時,成本與切削速度的關(guān)系圖 (b) 在磨損標準為0.6毫米時,成本與切削速度的關(guān)系圖</p><p> 在不同的磨損標準的情況下
27、,切削速度和成本的關(guān)系圖(干條件下) </p><p> (b)在不同的磨損標準的情況下,切削速度和成本的關(guān)系圖(濕條件下)</p><p> 圖3-16 KC732的切削速度和成本的關(guān)系圖 (a)在不同的磨損標準的情況下,切削速度和成本的關(guān)系圖(干條件下)(b) 在不同的磨損標準的情況下,切削速度和成本的關(guān)系圖(濕條件下)</p><p> 在不同的磨損標準
28、的情況下,切削速度和成本的關(guān)系圖(干條件下) </p><p> 在不同的磨損標準的情況下,切削速度和成本的關(guān)系圖(濕條件下) </p><p> 圖3-17 KC5010的切削速度和成本的關(guān)系圖 (a)在不同的磨損標準的情況下,切削速度和成本的關(guān)系圖(干條件下)(b) 在不同的磨損標準的情況下,切削速度和成本的關(guān)系圖(濕條件下)</p><p> (a)在磨
29、損標準為0.4毫米的情況下,成本和速度的關(guān)系圖</p><p> (b)在磨損標準為0.6毫米的情況下,成本和速度的關(guān)系圖</p><p> 圖3-18 在不同的磨損標準的情況下,對KC732和KC5010的切削成本的比較。(a)在磨損標準為0.4毫米的情況下,成本和速度做出的關(guān)系圖 (b) 在磨損標準為0.6毫米的情況下,成本和速度做出的關(guān)系圖</p><p>
30、; 表3-10 在相同的磨損標準時,三種刀具材料的比較</p><p> (a)在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(干條件下)</p><p> (b)在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(濕條件下)</p><p> 圖3-19 KC313 磨損標準和成本的關(guān)系圖(a)在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(干條件下)(b)
31、在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(濕條件下)</p><p> 在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(干條件下) </p><p> (b)在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(濕條件下)</p><p> 圖3-20 KC732 磨損標準和成本的關(guān)系圖(a)在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(干條件下)(b) 在
32、不同的切削速度下,磨損標準與切削成本的關(guān)系圖(濕條件下)</p><p> 在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(干條件下) </p><p> 在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(濕條件下) </p><p> 圖3-21 KC5010 磨損標準和成本的變化圖 (a)在不同的切削速度下,磨損標準與切削成本的關(guān)系圖(干條件下)(b) 在不
33、同的切削速度下,磨損標準與切削成本的關(guān)系圖(條件下)</p><p> KC313在磨損標準為0.4毫米的情況下刀具的壽命圖(干和濕) </p><p> ?。╞)在磨損標準為0.4毫米的情況下,KC732和KC5010的刀具壽命圖(干和濕)</p><p> 圖3-22 在磨損標準為0.4 毫米,干和濕條件下,刀具壽命的比較(a)KC313在磨損標準為0.4毫
34、米的情況下刀具的壽命圖(干和濕)(b) 在磨損標準為0.4毫米的情況下,KC732和KC5010的刀具壽命圖(干和濕)</p><p> 在實驗測試的速度范圍內(nèi),分別在干和濕的情況下,對刀具材料重新進行測試。結(jié)果提出了不經(jīng)過熱處理的KC313,表面涂有TIALN的KC5010和KC732。從圖3-23A和圖3-23B可以看出KC313在切削速度分別為100米/分、160米/分的情況下,理論和實驗的結(jié)果。理論和實
35、驗結(jié)果的一致表明了泰勒公式在刀具壽命預言中是正確的。圖3-24A和圖3-24B表明KC5010在理論和實驗中的結(jié)果,在速度為280米/分和速度為390米/分的情況下完全的一致被證明。KC732的理論和實驗的數(shù)據(jù)在速度分別為280米/分和390米/分的情況下在圖3-25A和圖3-25B中被證明。本節(jié)介紹樣本結(jié)果與其他數(shù)字列入附錄。</p><p> (a)速度為100米/分的情況下KC313理論和實驗的關(guān)系圖&l
36、t;/p><p> (b)速度為160米/分的情況下KC313理論和實驗的關(guān)系圖</p><p> 圖3-23 在不同速度的情況下KC313分別在干和濕時理論和實驗的結(jié)果(a)速度為100米/分的情況下KC313理論和實驗的關(guān)系圖 (b) 速度為160米/分的情況下KC313理論和實驗的關(guān)系圖 </p><p> (a)KC5010在速度為280米/分的情況下理論
37、和實驗的關(guān)系圖</p><p> (b)KC5010在速度為390米/分的情況下理論和實驗的關(guān)系圖</p><p> 圖3-24 KC5010在不同的速度情況下,分別在干和濕時理論和實驗的關(guān)系(a)KC5010在速度為280米/分的情況下理論和實驗的關(guān)系圖(b) KC5010在速度為390米/分的情況下理論和實驗的關(guān)系圖</p><p> (a)KC732在速
38、度為280米/分時理論和實驗的關(guān)系圖</p><p> (b)KC732在速度為390米/分時理論和實驗的關(guān)系圖</p><p> 圖3-25KC732在不同的速度情況下,分別在干和濕時理論和實驗的關(guān)系(a)KC732在速度為280米/分時理論和實驗的關(guān)系圖(b) KC732在速度為390米/分時理論和實驗的關(guān)系圖</p><p> 附 錄II(外
39、文原文)</p><p> 3.5 Testing of Tool Life Cost</p><p> Machining cost is the sum of the machine tool cost and the cutter cost. The machine cost consists of idle cost, machining cost, and tool chan
40、ging cost. The machining cost decreases with increased cutting speed; while the idle cost remains constant with changes in cutting speed. From the machining data handbook [24] the generalized machining cost equation is l
41、isted below:</p><p> In order to optimize the cutting condition, it is essential to determine the mathematical relationship between the cuttings inserts type and cutting speed. In our study Taylor's mod
42、el will be used in relating the cutting tool life to the cutting speed:</p><p> VT" =C 3-2</p><p> V= cutting speed</p><p> T= Cutting time to produce a standard amoun
43、t of flank wear (e.g. 0.2mm) n and C are constants for the material or conditions used.</p><p> In order to determine constants `n' and `C' for the cutting inserts under study in machining 4140 stee
44、l and the conditions used in the experiments, a LogV against LogT is drawn and shown for the three types of cutting inserts under study Figure 3-8A, Figure 3-8B are for KC313 under dry and wet conditions, Figure 3-9A, an
45、d Figure 3-9B are for KC732. In addition, Figure 3-10A, and Figure 3-10B are for KC5010. It can be seen from the aforementioned figures that in-spite of considerable scatter in t</p><p> Metal cutting studi
46、es focused on tools' wear, tool life, and wear mechanisms. However, future research should pay more attention to other factors as well:</p><p> Wear criterion value set up by the factory system, which b
47、asically the tool wear threshold value that suits the factory product. </p><p> Types of tools used, such as carbide tips and high speed tools. Studying the variation of tool life wear under dry and wet cut
48、ting that effect the tool life equation constants (C,n) is useful. This will improve tool life because it also affects the economy of cutting [24]. </p><p> In order to determine the effect of cutting fluid
49、 on the selected wear criterion, relationship between different wear criteria and machining cost for the cutting inserts under HSM must be studied. The value of the tool life constants (C,n) for different wear criteria a
50、re extracted and plotted within the ranges listed in table (3-7). The values of the constants (C, n) extracted from Figure 3-8A/B, Figure 3-9AIB, and Figure 3-10 are shown in tables 3-8 and 3-9. Further explanation of th
51、e relations</p><p> (a) Log (time) versus Log (speed) at different wear criteria (dry condition).</p><p> (b) Log (time) versus Log (speed) at different wear criteria (wet condition)Figure <
52、;/p><p> 3-8 Time versus speed at different wear criteria KC313. (a) Log (time) versus Log (speed) at different wear criteri(drycondition). (b) Log (time) versus Log (speed) at different wear criteria (wet con
53、dition).</p><p> Log (time) versus Log (speed) at different wear criteria (dry condition) </p><p> (b) Log (time) versus Log (speed) at different wear criteria (wet condition).</p><
54、p> Figure 3-9 Time versus speed at different wear criteria KC732 (a)Log (time) versus Log(speed) at different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition
55、)</p><p> Log (time) versus Log (speed) at different wear criteria (dry condition). </p><p> Log (time) versus Log (speed) at different wear criteria (wet condition) </p><p> Fig
56、ure 3-10 Time versus speed at different wear criteria KC5010 (a) Log (time) versus Log(speed) at different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition).</
57、p><p> Table 3-7 Ranges of plotted tool life constants.</p><p> Table 3-8 Wear Criteria versus `C' and `n' for three cutting inserts (Dry Condition).</p><p> Table 3-9 Wear
58、Criteria versus `C' and `n' for three cutting inserts (Wet Condition).</p><p> values increase for both cutting conditions. In addition, `n' values for wet condition is lower than dry conditions
59、 up until wear criterion 0.38 after which `n' for wet starts to get bigger. Figure 3-11B shows `C' values versus wear criterion, and reveals `C' increases as the wear criterion increases for both dry and wet
60、cutting. However, `C' values under wet condition are getting higher than under dry conditions. This proves the increase in tool life by introducing coolant emulsion and by incre</p><p> Next, Figure 3-1
61、2A represents values of `n' with respect to wear criterion for KC732 material under dry and wet conditions. As the wear criteria increase `n' values increase. Furthermore, wear curve is higher than dry curve. Fig
62、ure 3-12B presents a proportional relationship between constant `C' values and wear criterion. However, wet `C' curve is higher than dry curves, which indicates the benefit of using coolant emulsion for material
63、KC732. This benefit becomes more essential by increasing the</p><p> n values versus wear criterion (wet and dry). </p><p> C values versus wear criterion (wet and dry). </p><p>
64、 Figure 3-11 Taylor's constants for KC313 versus wear criteria,(a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry).</p><p> n values versus wear criterion (w
65、et and dry). </p><p> C values versus wear criterion (wet and dry). </p><p> Figure 3-12 Taylor's constants for KC732 versus wear criteria, (a) n values versus wear criteria (wet and dry),
66、 (b) C values versus wear criteria (wet and dry).</p><p> n values versus wear criterion (wet and dry). </p><p> C values versus wear criterion (wet and dry) </p><p> Figure 3-13
67、 Taylor's constants for KC5010 versus wear criteria, (a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry).</p><p> Both conditions indicate as the wear criter
68、ia increases the machining cost decreases. Nonetheless, as the speed increases the cost reaches optimum value and then increases. Figure 3-15A and Figure 3-15B show economical comparison between dry and wet cutting at (0
69、.4 and 0.6 mm) wear criterion. Optimum cutting speed for dry cutting is 90 m/min while 120 m/min is for wet cutting.</p><p> Cost as a function of speed is presented in Figure 3-16A and Figure 3-16B for san
70、dwich coating (KC732) under dry and wet conditions. Again, as wear criteria increases, cost decreases. Furthermore, the optimum speed of 260 m/min of dry cutting, increased to 360 m/min in cases of wet cutting. This indi
71、cates the importance of coolant with this material not only decreases cost but also increases productivity.</p><p> Figure 3-17A and Figure 3-17B summarize the relationship of cost and speed for coated tool
72、s with TiALN (KC5010) under dry and wet cutting conditions. As the cutting speed increases the cost increases and as the wear criteria increases the cost decreases. The optimum cost was at the lowest speed (210 m/min) in
73、 both machining conditions.</p><p> A cost comparison between KC732 and KC5010 at different wear criteria and machining conditions is presented in Figures 3-18A and 3-18B. It can be seen that KC732 responde
74、d positively to coolant in terms of extended tool life, and increased the optimum cutting speed from 260m/min to 360 nn/min. Nonetheless, coolant introduction to KC5010 at high speed cutting lowered the tool life and inc
75、reased machining cost. The data presented in the aforementioned figures shows that dry cutting is more cost ef</p><p> Figures 3-19A, and 3-19B for KC313 (uncoated) show the relationship between costs and w
76、ear criterion at different cutting speeds under dry and wet conditions. Figure 3-20A, and Figure 3-20B are plotted for KC732 presenting cutting cost as a function of wear criteria for dry and wet conditions. Figure 3-21A
77、 and Figure 3-21B are plotted for KC5010. The curves show that for the same cutting velocity, by increases the selected wear criterion, the cost decreases.</p><p> The improved performance of (KC313) under
78、wet over dry cutting in terms off tool life is presented in Figure 3-22A. The results of the two coatings testing methods, of flank wear for the KC732 and KC5010 are shown in Figure 3-2B. Clearly this indicates improveme
79、nt in cutting inserts' life with TiN-TiCN-TiN coatings (KC732) under wet over dry cutting, and reduction in tool life of TiALN coating (KC5010) on wet cutting. Finally, KC732 provides superior performance under all c
80、utting conditions over</p><p> The variation of cost versus cutting speed at different wear criteria (dry ). </p><p> The variation of cost versus cutting speed at different wear criteria (wet
81、). </p><p> Figure 3-14 Cost variation with speed for KC313, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear
82、 criteria (wet).</p><p> The variation of cost versus cutting speed at 0.4mm wear criterion. </p><p> The variation of cost versus cutting speed at 0.6mm wear criterion </p><p>
83、Figure 3-15 Cost versus speed comparison at wet and dry at two values of wear Criterion: (a) The variation of cost versus cutting speed at 0.4mm wear Criterion, (b) The variation of cost versus cutting speed at 0.6mm wea
84、r criterion.</p><p> The variation of cost versus cutting speed at different wear criteria (dry ). </p><p> The variation of cost versus cutting speed at different wear criteria (wet). </p&
85、gt;<p> Figure 3-16 Cost variation with speed for KC732, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear criteria
86、(wet).</p><p> The variation of cost versus cutting speed at different wear criteria (dry ). </p><p> The variation of cost versus cutting speed at different wear criteria (wet). </p>&
87、lt;p> Figure 3-17 Cost variation with speed for KC732, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear criteria (wet).
88、</p><p> Cost versus speed at 0.4 mm wear criterion </p><p> Cost versus speed at 0.6 mm wear criterion </p><p> Figure 3-18 Cost comparison between KC5010 and KC732 at different
89、 wear criteria (a) Cost versus speed at 0.4 mm wear criterion, (b) Cost versus speed at 0.6 mm wear criterion.</p><p> Table 3-10 Comparison between three cutting inserts at the same wear criterion </p&g
90、t;<p> The variation of cost versus wear criterion at different cutting speeds (dry ). </p><p> The variation of cost versus cutting speed at different wear criteria (wet). </p><p> Fi
91、gure 3-19 Cost variation with wear criteria for KC313, (a): The variation of cost versus cutting speed at different wear criteria (dry), (b): The variation of cost versus cutting speed at different wear criteria (wet).&l
92、t;/p><p> ?。╝)The variation of cost versus wear criterion at different cutting speeds (dry )</p><p> (b)The variation of cost versus wear criterion at different cutting speeds (wet).</p>&l
93、t;p> Figure 3-20 Cost variation with wear criteria for KC732, (a): The variation of cost versus cutting speed at different wear criteria (dry), (b): The variation of cost versus cutting speed at different wear criter
94、ia (wet).</p><p> The variation of cost versus wear criterion at different cutting speeds (dry ). </p><p> The variation of cost versus wear criterion at different cutting speeds (wet). </p
95、><p> Figure 3-21 Cost variation with wear criteria for KC5010, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear
96、 criteria (wet)</p><p> Tool life at 0.4 mm wear criterion for KC313 (dry & wet). </p><p> (b)Tool life at 0.4 mm wear criterion of KC732 and KC5010 (dry &wet).</p><p> F
97、igure 3-22 Tool life comparison at 0.4 wear criterion under dry and wet(a) Tool life at 0.4 mm wear criterion for KC313 (dry & wet), (b) Tool life at 0.4 mm wear criterion of KC732 and KC5010 (dry &wet).</p>
98、;<p> The cutting inserts were retested at cutting speed values within the range of experimental testing speeds under dry and wet machining condition. The results presented are for the cemented carbide uncoated (
99、KC313), cemented carbide coated with TiALN (KC5010), and for the KC732. Figures 3-23A and 3-23B show the theoretical and experimental results of machining KC313 at a cutting speed of 100 m/min, and 160 m/min respectively
100、. A good agreement between theoretical and experimental values was noticed</p><p> Theoretical and experimental results of machining KC313 at 100m/min. </p><p> Theoretical and experimental re
101、sults of machining KC313 at 160m/min. </p><p> Figure 3-23 Theoretical and experimental results for KC313 under wet and dry cutting at different speeds: (a) Theoretical and experimental results of machining
102、 KC313 at 100m/min, (b) Theoretical and experimental results of machining KC313 at 160m/min.</p><p> Theoretical and experimental results of machining KC5010 at 280m/min. </p><p> Theoretical
103、and experimental results of machining KC5010 at 390m/min. </p><p> Figure 3-24 Theoretical and experimental results for KC5010 under wet and dry cutting at different speeds: (a) Theoretical and experimental
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--刀具成本的檢測.doc
- 外文翻譯--刀具成本的檢測.doc
- 外文翻譯--刀具成本的檢測.doc
- 外文翻譯--刀具成本的檢測.doc
- 外文翻譯--刀具成本的檢測.doc
- 刀具成本的檢測外文文獻翻譯@中英文翻譯@外文翻譯
- 翻譯-刀具成本的檢測.doc
- 翻譯-刀具成本的檢測.doc
- 刀具成本的檢測
- 刀具成本的檢測
- 機械畢業(yè)設(shè)計英文外文翻譯106刀具成本的檢測
- 機械畢業(yè)設(shè)計英文外文翻譯106刀具成本的檢測
- 機械畢業(yè)設(shè)計英文外文翻譯106刀具成本的檢測.doc
- 機械畢業(yè)設(shè)計英文外文翻譯106刀具成本的檢測.doc
- 刀具成本的檢測.doc
- 刀具成本的檢測.doc
- 外文翻譯--刀具
- 刀具成本的檢測.doc
- 刀具成本的檢測.doc
- 刀具成本的檢測.doc
評論
0/150
提交評論