土木工程橋梁外文翻譯_第1頁
已閱讀1頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  畢業(yè)設計</b></p><p><b>  外文翻譯</b></p><p>  題 目 跨 越 世 紀 之 橋</p><p>  專 業(yè) 土木工程(橋梁) </p><p>  班 級 2007級3 班 </p>&

2、lt;p>  學 生 陳 博 </p><p>  指導教師 劉 東 </p><p><b>  重慶交通大學</b></p><p><b>  2011年6月</b></p><p>  A Bridge For All Centurie

3、s</p><p>  An extremely long-and record setting-main span was designed for the second bridge to across the Panama Canal in order to meet the owner’s requirement that no piers be placed in the water.Because n

4、o disruption of canal traffic was permitted at any time,the cable-stayed bridge of cast-in-place cancrete was carefully constructed using the balanced-cantilever method.</p><p>  In 1962 ,the Bridge of Ameri

5、cas(Puente de las America) opened to traffic,serving as the only fixed link across the Panama Canal .The bridge was designed to carry 60,000 vehicles per day on four lanes, but it has beenoperating above its capacity for

6、 many years.Toalleviate bottlenecks on the route that the bridge carries over the canal-the Pan-American Highway(Inter-American Highway)-and promotegrowth on the western side of Panama,the country’s Ministry of Public Wo

7、rks(Ministerio de Obras Publicas</p><p>  In 200 the MOP invited international bridge design firms to compete for the design of the crossing, requesting a two-package proposal:one techinical, the other finan

8、cial. A total of eight proposals were received by December 2000 from established bridge design firms all over the world. After short-listing three firms on the basis of the technical merits of their proposals, the MOP se

9、lected T.Y.Lin International, of San Francisco, to prepare the bridge design and provide field construction support</p><p>  The Centennial Bridge desige process was unique and aggressive,incorporating conce

10、pts from the traditional design/build/bid method, the design/build method , and the sa-called fast-track design process.To complete the construction on time-that is ,within just 27 months-the design of the bridge was car

11、ried out to a level of 30 percent before construction bidding began, in December 2001.The selected contractor-the Wiesbaden,Germany,office of Bilfinger Berger,AG-was brought on board immediately aft</p><p> 

12、 The design selected by the client features two single-mast towers,each supporting two sets of stay cables that align in one vertical plane.Concrete was used to construct both the towers and the box girder deck,as well a

13、s the approach structures.</p><p>  The MOP , in conjunction with the Panama Canal Authority,established the following requirements for the bridge design :</p><p>  A 420m,the minimum length for

14、 the main span to accommodate the recently widened Gaillard Cut,a narrow portion of the canal crossing the Continental Divide that was straightened and widened to 275m in 2002;</p><p>  A navigational envelo

15、pe consisting of 80m of vertical clearance and 70m of horizontal clearance to accommodate the safe passage of a crane of World War 11 vintage-a gift from the U.S.government that is used by the Panama Canal Authority to m

16、aintain the canal gates and facilities;</p><p>  A roadway wide enough to carry six lanes of traffic, three in each direction;</p><p>  A deck able to accommodate a 1.5m wide pedestrian walkway;

17、</p><p>  A design that would adhere to the American Association of State Highway and Transportation Official standard for a 100-year service life and offer HS-25 truck loading;</p><p>  A stru

18、cture that could carry two 0.6m dianeter water lines;</p><p>  A construction method that would not cross the canal at any time or interrupt canal operationa in any way.</p><p>  Because of the

19、bridge’s long main span and the potential for strong seismic activity in the area,no single building code covered all aspects of the project.Therefore the team from T.Y. Lin International determinded which portions of se

20、veral standard bridge specifications were applicable and which were not.The following design codes were used in developing the design criteria for the bridge,it is standard specifications for highway bridge ,16th ed,1996

21、</p><p>  It was paramount that the towers of the cable-stayed structucture be erected on land to avoid potential ship collision and the need to construct expensive deep foundation in water. However, geologi

22、cal maps and boring logs produced during the preliminary design phrase revealed that the east and west banks of the canal, where the towers were to be located, featured vastly different geologicaland soil conditions. On

23、the east side of the canal, beneath shallow layers of overburden that rangs in cons</p><p>  Before a detailed design of the foundationa could be developed,a thorough analysis of the seismic hazards at the s

24、ite was required,The design seismic load for the project was developed on the basis of a probabilistic seismic hazard assessment that considered the conditions at the site.Such an assessment establishes the return period

25、 for a given earthquake and the corresponding intensity of ground shaking in the horizontal directtion in terms of an acceleration response spectrum.The PSHA determin</p><p>  The 7.7MW NPDB event was used a

26、s the safety evluation earthquake,that is,the maximum earthquake that could strike without putting the bridge out of service.The damage to the bridge would be minor but would require some closures of the bridge.The 6.5MW

27、Rio Gatun Fault event was used as the foundational evaluation earthquake,a lower-level temblor that would cause minimal damage to the bridge and would not require closures.For the FEE load case,the SEE loading was scaled

28、 back by two-thirds.The FEE i</p><p>  Because of uncertainty about the direction from which the seismic waves would approach the site, a single response spectrum-a curve showing the mathematically computed

29、maximum response of a set of simple damped harmonic oscillators of different natural frequencies to a particular earthquake ground acceleration-was used to characterize mitions in two mutually orthogonal directions in th

30、e horizontal plane.To conduct a time-history analysis of the bridge’s multiple supports,a set of synthetic motio</p><p>  A time delay estimate-that is,an estimate of the time it would take for the motions g

31、enerated by the SEEand FEE earthquakes to travel from one point to the next-was create using the assumed seismic wave velocity and the distance between the piers of the bridge.Using an assumed was velocity of approximate

32、ly 2.5km/s,a delay on the order of half a second to a second is appropriate for a bridge 1 to 2km long.</p><p>  Soil-foundation interaction studies were performed to determine the stiffness of the soil and

33、foundation as well as the seismic excitation measurement that would be used in the dynamic analyses.The studieswere conducted by means of soil-pile models using linear and nonlinear soil layera of varying depths.The equi

34、valent pile lengths in the studies-that is, the lengths representing the portions of a given pile that would actually be affected by a given earthquake-induced ground motion-ranged from2</p><p>  Once the ab

35、ove analyses were completed,the T.Y.Lin International engineers-taking into consideration the project requirements developedby the owener-evaluated several different concrete cable-stayed designs.A number of structural s

36、ystems were investigated,the main variables,superstructure cross sections,and the varying support conditions described above.</p><p>  The requirement that the evevation of the deck be quite high strongly in

37、fluenced the tower configuration.For the proposed deck elevation of more than 80m,the most economical tower shapes included single-and dual-mast towers as well as “goal post”towers-that is,a design in which the two masts

38、 would be linked to each other by crossbeams.</p><p>  Ultimately the engineers designd the bridge to be 34.3m wide with a 420mlong cable-stayd main span,two 200mlong side spans-one on each side of the main

39、span-and approach structures at the ends of the side spans.On the east side there is one 46m long concrete approach structure,while on the west side there are three,measuring 60,60,and 66m,for a total bridge length of 1,

40、052m.The side spans are supported by four piers,referred to,from west to east,as P1.P2,P3,and P4.</p><p>  The bridge deck is a continuous single-cell box girder from abutment to abutment; the expansion join

41、ts are located at the abutments only. Deck movements on the order of 400 mm are expected at these modular expansion joints Multidirectional pot bearings are used at the piers and at the abutments to accommodate these mov

42、ements.</p><p>  The deck was fixed to the two towers to facilitate the balanced-cantilever method of construction and to provide torsional rigidity and lateral restraint to the deck.. Transverse live loads,

43、 seismic loads, and wind loads are proportionally distributed to the towers and the piers by the fixity of the deck to the towers and by reinforced-concrete shear keys located at the top of P1, P3, and P4. The deck is al

44、lowed to move longitudinally over the abutments and piers. The longitudinal, seismic, live</p><p>  As previously mentioned, the presence of competent basalt on the east side of the site meant that shallow f

45、oundations could be used there; in particular, spread footings were designed for the east tower, the east approach structure, and the east abutment. The west tower, the west approach structure, and the western piers (P2

46、and P3), however, had to be founded deep within the Cucaracha Formation. A total of 48 cast-in-drilled-hole (CIDH) shafts with 2 m outer diameters and lengths ranging from 2</p><p>  A minimum amount of tran

47、sverse steel had to be determined for use in the plastic regions of the shaft-that is, those at the top one-eighth of eighth of each shaft and within the shaft caps, which would absorb the highest seismic demands. Once t

48、his amount was determined, it was used as the minimum for areas of the shafts above their points of fixity where large lateral displacements were expected to occur. The locations of the transverse steel were then establi

49、shed by following code requirements </p><p>  Even though thief foundation designs differed, the towers themselves were designed to be identical. Each measures 185.5 m from the top of its pile cap and is des

50、igned as a hollow reinforced-concrete shaft with a truncated elliptical cross section (see figure opposite). Each tower’s width in plan varies along its height, narrowing uniformly from 9.5 m at the base of the tower to

51、6 m at the top. In the longitudinal direction, each pylon tapers from 9.5 m at the base to about 8 m right below the de</p><p>  The towers were designed in a accordance with the latest provisions of the ATC

52、 earthquake design manual mentioned previously (ATC-32). Owing to the portal frame action along the bridge’s longitudinal axis, special seismic detailing was implemented in regions with the potential to develop plastic h

53、inges in the event of seismic activity-specifically, just below the deck and above the footing. Special confining forces and alternating open stirrups-with 90 and 135 degree hooks-within the perimeter o</p><p&

54、gt;  In the transverse direction, the tower behaves like a cantilever, requiring concrete-confining steel at its base. Special attention was needed at the joint between the tower and the deck because of the central-plane

55、 stay-cable arrangement, it was necessary to provide sufficient torsional stiffness and special detailing at the pier-to-deck intersection. This intersection is highly congested with vertical reinforcing steel, the close

56、ly spaced confining stirrups of the tower shaft, and the deck pre</p><p>  The approach structures on either side of the main span are supported on hollow reinforced-concrete piers that measure 8.28 by 5 m i

57、n plan. The design and detailing of the piers are consistent with the latest versions of the ATC and AASHTO specifications for seismic design. Capacity design concepts were applied to the design of the piers. This approa

58、ch required the use of seismic modeling with moment curvature elements to capture the inelastic behavior of elements during seismic excitation. Push</p><p>  The deck of the cable-stayed main span is compose

59、d of single-cell box girders of cast-in-place concrete with internal, inclined steel struts and transverse posttensioned ribs, or stiffening beams, toward the tops. Each box girder segment is 4.5 m deep and 6 m long. To

60、facilitate construction and enhance the bridge’s elegant design, similar sizes were used for the other bridge spans. An integral concrete overlay with a thickness of 350 mm was installed instead of an applied concrete ov

61、erlay on th</p><p>  A total of 128 stay cables were used, the largest comprising 83 monostrands. All cables with a length of more than 80 m were equipped at their lower ends with internal hydraulic dampers.

62、 Corrosion protection for the monostrands involved galvanization of the wires through hot dipping, a tight high-density polyethylene (HDPE) sheath extruded onto each strand, and a special type of petroleum wax that fills

63、 all of the voids between the wires.</p><p>  The stays are spaecd every 6 m and are arranged in a fan pattern.They are designed to be stressed from the tower only and are anchored in line with a continuous

64、stiffening beam at the centerline of the deck.The deck anchorage system is actually a composite steel frame that encapsulates two continous steel plates that anchor the stays and transfer the stay forces in a continuous

65、and repetitive system-via shear studs-throuthout the extent of the cable-supported deck (see figure above).A steel fram</p><p>  In addition to the geotechnical and seismic analyses,several structural analys

66、es were performed to accurately capture the behavior of this complex bridge.</p><p>  For the service-load analysis,which includes live,temperature,and wind loads,the engineers used SAP2000, a computer progr

67、am created and maintained by Computers &Structrures,Inc.(CSI), of Berkeley, California.This program was selected for its ability to easily model the service loads and to account for tridimensional effects.For correct

68、 SAP2000 modeling, it was necessary to define a set of initial stresses on the cables, deck, and tower elements to capture the state of the structure at the end of</p><p>  The seismic analysis of the struct

69、ure was conducted using the SADSAP structural analysis program, also a CSI product, based on the differences in seismic motions that will be experienced at the different piers based on their distance from one another.Thi

70、s sophisticated program has the capability to model inelastic behavior in that flexural plastic hinges can readily be simulated.Plastic hinge elements were modeled at varous locations along the structure where the result

71、s from a preliminary respo</p><p>  As previously mentioned,the construction contractor was brought on board early in the process;the company’s bid of $93 million was accepted and the project was awarded in

72、March 2002.To guarantee unimpeded canal traffic,the bridge had to be constructed without the use of the canal waters.To accomplish this, the cast-in-place main-pain superstructure was erected using the balanced-cantileve

73、r method.Form travelers were used to accomplish this, and they were designed in such a way that they could be</p><p>  To save time, the towers approach structure, and piers were built simultaneously.The app

74、roach viaducts were designed and built using the span-by-span erection method by means of an underslung suupport truss.The east viaduct span was built first and the support truss was then removed and transferred to the w

75、est side so that it could be used to build the three spans of the west viaduct, one span at a time.</p><p>  The bridge construction was completeed in Auguse 2004 at a cost of approximately $2,780 per square

76、 meter.Its opening awaits the completion of the rest of the highway it serves.</p><p><b>  跨越世紀之橋</b></p><p>  1962年,橫跨巴拿馬運河的美國大橋作為僅有的固定連接開放交通車。當初設計這座橋時4個車道的日交通量為60000輛,但是那么多年來他一直在“過

77、載”中運行。為了減輕大橋線路的平靜問題,促進巴拿馬西部地區(qū)的發(fā)展,國家公共工作部決定修建一個新的高速公路系統(tǒng)。用于聯(lián)系位于運河東部的巴拿馬城北部地區(qū)和運河西部。百年大橋(為紀念巴拿馬人民獨立100周年而命名)已經(jīng)開始修建。等他對外開放那時將有6個車道,這種預應力混凝土斜拉橋的主跨為420m,是西半球此種類型橋梁中跨徑最大的。</p><p>  2000年,MOP邀請國際橋梁設計公司競爭設計此橋,有兩方面要求:一

78、是技術(shù),二是投資。2000年12月,MOP總共收到了來自全球各地橋梁設計公司的8個方案。在技術(shù)優(yōu)勢上列出了三個侯選公司后,MOP最終選擇了舊金山的T.Y.Lin設計橋梁,提供修建場地,依靠該公司的財政實力。</p><p>  百年大橋的設計是史上無前例的,是氣勢宏偉的,是傳統(tǒng)設計方法與所謂的快進度設計方法的結(jié)合。為了能在27個月內(nèi)及時完成工程,在2001年12月施工開始前的設計工作的30%得進展順利才行。選擇的

79、承包商—法國的Wiesbanden在被MOP相中后立即簽訂了合同。因此,橋梁設計的完成與施工聯(lián)系在一起,整個工序類似于設計—修建。</p><p>  被選中的設計以兩個獨立的塔柱為特色,每一個塔柱支撐著兩組輻射式的纜索。塔柱、縱梁以及一些聯(lián)系結(jié)構(gòu)都由混凝土制作。</p><p>  MOP聯(lián)同巴拿馬運河當局就大橋的設計提出了如下要求:</p><p>  主跨長度

80、不得小于420m,能適應最近加寬的Gaillard Cut—運河的一小部分,橫跨Continental Divide,2002年被修補過并加寬到了275m。</p><p>  為了容納第二次世界大戰(zhàn)汽車的一個起重機使用了一個垂直凈長為80m,水平凈長為70m的導航用支架。它是英國政府送給巴拿馬運河當局用來維修運河大門及其設備的。</p><p>  車行道要足夠?qū)挘苋菁{6個車道。每個方

81、向3車道。</p><p>  路緣能容納1.5m寬的人行道。</p><p>  設計應遵循美國各洲公路與運輸工作者協(xié)會(ASHTO)關(guān)于公路100年工作壽命和H-25卡車荷載的標準。</p><p>  一個結(jié)構(gòu)要有2個直徑為0.6m瀉水管。</p><p>  施工方法不能妨礙運河的正常工作,不管何時、用什么方法。</p>

82、<p>  由于橋跨過長以及該地區(qū)較強的地震活動,沒有哪部建設法則能涵蓋此項工程的所有方面。因此T.Y.Lin國際確定了橋梁規(guī)范標準的那些部分可用,那些不可用。下列設計標準被用來作為此橋的設計標準。</p><p>  纜索的塔柱結(jié)構(gòu)必須建在避免偶然的輪船沖擊力,還需要在水中修建深基礎(chǔ),這兩方面是最重要的。然而,在初步設計階段進行的地質(zhì)勘測和鉆孔取樣表明運河東部和西部堤岸的地質(zhì)和土壤條件很不一樣,也就

83、是塔柱坐落處。運河的東面,在過載的淺水區(qū)土層(堅硬度軟到硬)下面有一大塊中硬到堅硬連接緊密的玄武巖。工程師認為在橋這邊的玄武巖能夠提供修建塔柱和墩臺及其他結(jié)構(gòu)的平臺。然而運河西面地質(zhì)是臭名昭著的Cucaracha結(jié)構(gòu),也就是頁巖粘土混雜砂巖、玄武巖和灰,很容易造成崩塌、滑坡。作為地下基層Cucaracha結(jié)構(gòu)是相當穩(wěn)定的,但是一旦暴露極易腐蝕風化。因此工程師認為西面踏柱、墩臺及其相關(guān)結(jié)構(gòu)應需修建伸基礎(chǔ)。</p><p

84、>  在制度基礎(chǔ)的詳細設計方案之前,需要對該位置的地震危險性作一個全面的分析。工程的地震荷載設計是基于考慮到該位置的可能地震危險估計(PSHA)。這個估計確定了地震和對應的地面震動在水平方向的往返時間。PSHA總結(jié)了兩個主要震動來說:一個是Rio Gatun Fault,能產(chǎn)生6.5Mw的震級。</p><p>  7.7Mw的NPDB震級被作為地震時的安全系數(shù),也就是說即使最大震級作用也不會對橋的運作造成

85、不良影響,對橋的損害很小不過會造成一些裂縫。6.5Mw的Rio Gatun Fault震級被作為地震時的,一個微小的地震運動只對橋造成及小的損害不會產(chǎn)生裂紋。如果FEE荷載已知,SEE荷載就是它的1/3,假設FEE有一個最大加速度,即0.21g一個循環(huán)周期(500年)。此加速度有可能被超越,50年增加10%,100年增加18%,同樣假設SEE也有一個最大加速度,即0.33g一個循環(huán)周期(2500年),它也有可能增大,50年增加2%,10

86、0年增加4%。</p><p>  由于接近該位置的地震波來說方向確定性,所以用單個反應范圍(一條曲線顯示一批簡易、潮濕、協(xié)調(diào)震動器的不同固有頻率與個別地震加速度的統(tǒng)計規(guī)律)來描述水平面上兩個相互垂直的運動的特征。為了研究分析橋梁雙重支撐的耐久性(縱向、橫向、豎向)組成的綜合運動,需要借助反復工藝過程。以及一系列由三方面因素延遲時間估計,即該段估計時間被認為是由SEE和FEE地震產(chǎn)生的運動從一個點傳到下一個點的時

87、間假設地震波速度和塔柱之間的距離計算得到。波速大約為2.5㎞/s,延遲時間為0.5s~s,這對1~2㎞長的橋梁是最合適的。</p><p>  土基相互作用研究用來確定土壤和基礎(chǔ)的硬度,以及地震刺激測量在動力學分析上的應用。這些研究通過土壤不同深度的淺性堆積和非淺性堆積研究來實現(xiàn)。研究中的等植堆積長度,此長代表堆積層長度的一部分受地震運動的影響,一般為2~10m。在這樣一個三畏空間模型中,土壤通過其硬度可從6個方

88、向限制土體的運動(三方向的軸向力和三方向的扭轉(zhuǎn)彎距)。因為橋所在位置包含許多不同土壤類型的土層,因此每一層需要用不同的硬度模量來表示然后進行分析。</p><p>  一旦以上的分析完成,T.Y國際公司的工程師考慮到該工程負責人的要求對幾個不同的混凝土斜拉索設計進行評估對此。很多結(jié)構(gòu)系統(tǒng)需檢查,包括主要的可變因素,如塔的結(jié)構(gòu)、斜索的構(gòu)造、橋跨的設計、上層結(jié)構(gòu)的交叉段以上述結(jié)構(gòu)的支撐情況。</p>&

89、lt;p>  橋面的提升對塔結(jié)構(gòu)有非常重要的影響。提案要求至少把橋面板提升80m,最經(jīng)濟的塔的構(gòu)造包括各自獨立的雙桿塔,也就是說,兩桿將通過交叉鋼束相互連接。工程負責人后選擇了單桿塔,因為這樣設計施工簡便,可運作、簡單又不失優(yōu)雅。</p><p>  最后工程師設計出了一座:寬34.3m,主跨420m長的斜索橋,兩個200m長的邊跨位于主跨的兩端,連接結(jié)構(gòu)在邊跨的末端。東端的混凝土連接構(gòu)造長420m,而西端

90、有3個,長分別為60m,60m和66m,所以橋的全長為1052m,橋的邊跨由4個橋墩支撐,至西向東為P1,P2,P3和P4。</p><p>  橋的主梁從橋臺是一個連續(xù)的箱形絎架,并且只在支座處設置伸縮縫。這些標準化的伸縮縫允許橋面板有400mm的伸縮風4。多方位的弧形軸承用在墩位和支座上以適應其運動。</p><p>  把橋面板安裝在兩塔柱上以便懸臂法施工,并且提供橋面板的扭轉(zhuǎn)剛度和

91、冊向約束。橫向的荷載和風載通過塔柱以及位于P1,P2,P3和P4頂部的鋼筋混凝土剪力索被部分地分散。支座和塔柱處的橋面板允許在縱向活動??v向荷載、地震荷載、活載以及溫度荷載被稱為所熟悉的網(wǎng)絡框架結(jié)構(gòu)行為吸收、分散。通過塔柱和橋面板形成的接口,很像建筑物結(jié)構(gòu)的門,它與兩塔柱的相對硬度互成比例地運作。</p><p>  如前面提到過的東西地區(qū)玄武的存在意味著此處需要淺層基礎(chǔ)。特別是東西塔柱、連接結(jié)構(gòu)和墩臺需要深扎于

92、Cucaracha結(jié)構(gòu)中。這就需要一些外徑為2m,長度為25~35m的鉆孔(CIDH)轉(zhuǎn)動軸。用彎距分析來確定在不同數(shù)量的縱向增強鋼筋作用下動軸的工作性能。結(jié)果不符合要求,基于這些結(jié)果工程師決定轉(zhuǎn)動軸中的縱向鋼筋應力混凝土數(shù)量的1%??v向鋼筋的布置應滿足以下規(guī)范要求,考慮承包商優(yōu)先選擇的CIDH柱施工的限制。</p><p>  傳動軸塑性區(qū)域的最少橫向鋼筋數(shù)被確定,因為每個傳動軸距頂端1/8處和所有傳動軸頂部吸

93、收了最強的地需要作用。一旦這個數(shù)目被決定,他就被用來作為滯后位移發(fā)生的最小區(qū)域。橫向鋼筋的布置遵循以下規(guī)范,并考慮CIDH柱施工的局限。橫向鋼筋呈螺旋布置。</p><p>  然而它們被設計成不同的作用,索塔被設計成完全相同的。每個都放在距墩帽185.5m的高處,被設計成中的預應力砼結(jié)構(gòu),一個被截去頂端的橢圓形受力面積。每個索塔的寬度從它的高度上變化很大,在底部都是9.5m,在塔頂是6m。在縱橋向上,從塔底部的

94、9.5m到拱上建筑標高處恰好寬度為8m,且矢高為87m。在橋面建筑標高以上的塔部分寬度從4.6m變到塔頂?shù)?.5m。每個索塔兩側(cè)都帶有4m寬的人行道。這種設計上的挑戰(zhàn)需要細節(jié)上的小心謹慎。</p><p>  索塔被設計的應用了先進的ATC抗震技術(shù)。在沿縱向橋的方向上,特殊的細部結(jié)構(gòu)和區(qū)域被設計為塑料的,特別是橋面建筑下部和拱圈上部。特殊的鋼材被應用到塔的拐角處,在這些地方有較高的應力,需要90°和13

95、5°的鉤子鉤住。</p><p>  在縱向橋上,撓的性能就像一個懸臂,需要在其下部鋼筋。特別要注意塔和橋面相接觸。因為在塔中間設置的懸索,它會提供足夠的抗扭鋼度和特殊的墩和橋面的連接是很有必要的。這些交叉的地方?jīng)]有豎向預應力鋼筋,并且設置在距塔的中性軸較近的地方,橋面構(gòu)造也要設置預應力。</p><p>  主跨兩邊的結(jié)構(gòu)是支撐在一個8.28m×5m的中空的預應力砼的

96、橋墩上。橋墩的設計和細部構(gòu)造是與ATC和AASHTO的具體結(jié)構(gòu)相一致的。允許承載能力應用到設計中。這種方法需要一種模型,此模型的構(gòu)造件的性能反應墩的性能。分析橋墩的邊縣形式來計算承載力并且與時程分析進行比較。這樣來保證墩的承載作用(這是一種用特征分析的方法來標承載力的)。在這些地方提供鋼筋砼是有必要的,這些地方與基礎(chǔ)表現(xiàn)出所希望的形式。</p><p>  橋面建筑的用懸索拉起的主跨是由整體澆注的單獨的箱梁組成的

97、,包括鋼筋,肋板、梁、并向塔高的方向。每個箱梁件是4.2m高,6m長。為了更易建筑和增加橋梁設計的簡潔;在其它的路徑采用了相似的尺寸。橋上鋪的是整體的砼350mm,并不是直接在橋面上澆注的。與整體澆注相比,它是沿架設的箱梁澆注的,碾壓設備被應用來獲得平整度的路面。最小的碾壓厚度為5mm。</p><p>  共用到了128根懸索,最大的一個是由83根鋼鉸線組成。所有大于80m長度的索用器具設在塔頂?shù)哪┒?。對鋼鉸線

98、的保護包括對于進行扭處理,及張拉,和一種特殊的材用充滿數(shù)根鋼鉸線之間。</p><p>  每隔6m設置懸索并且是成對設置的。它們通過用連續(xù)梁在中性軸上錨固并在塔中間直線拉起。橋面錨固系統(tǒng)是由鋼架組成的,這個鋼架由兩個連續(xù)的橋面板組成錨固懸索。鋼架被設計成通過縱向橋的橋面轉(zhuǎn)移水平力,并且通過整體的鋼結(jié)構(gòu)轉(zhuǎn)移豎向力。這種創(chuàng)新的簡潔的荷載轉(zhuǎn)移系統(tǒng)使橋面建筑的恫結(jié)構(gòu)快速建筑,有可能的話,三到五天就能循環(huán)一次。</

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論