版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 資料翻譯</b></p><p><b> 英文資料</b></p><p> Stepper Motor Basics</p><p> [Tieluo Lin.Jianxun Zhang. DSP-based microstep controller of stepper motor
2、.Intelligent Control and Automation, 2004. Fifth World Congress on Volume 5, 15-19 June 2004.]</p><p> A stepper motor is an electromechanical device which converts electrical pulses into discrete mechanic
3、al movements. The shaft or spindle of a stepper motor rotates in discrete step increments when electrical command pulses are applied to it in the proper sequence. The motors rotation has several direct relationships to t
4、hese applied input pulses. The sequence of the applied pulses is directly related to the direction of motor shafts rotation. The speed of the motor shafts rotation is directly re</p><p> Stepper Motor Advan
5、tages and Disadvantages</p><p> Advantages</p><p> 1. The rotation angle of the motor is proportional to the input pulse.</p><p> 2. The motor has full torque at standstill (if t
6、he windings are energized)</p><p> 3. Precise positioning and repeatability of movement since good stepper motors have an accuracy of 3 – 5% of a step and this error is non cumulative from one step to the n
7、ext.</p><p> 4. Excellent response to starting/stopping/reversing.</p><p> 5. Very reliable since there are no contact brushes in the motor. Therefore the life of the motor is simply dependant
8、 on the life of the bearing.</p><p> 6. The motors response to digital input pulses provides open-loop control, making the motor simpler and less costly to control.</p><p> 7. It is possible t
9、o achieve very low speed synchronous rotation with a load that is directly coupled to the shaft.</p><p> 8. A wide range of rotational speeds can be realized as the speed is proportional to the frequency of
10、 the input pulses.</p><p> Disadvantages</p><p> 1. Resonances can occur if not properly controlled.</p><p> 2. Not easy to operate at extremely high speeds.</p><p>
11、 Open Loop Operation</p><p> One of the most significant advantages of a stepper motor is its ability to be accurately controlled in an open loop system. Open loop control means no feedback information abo
12、ut position is needed. This type of control eliminates the need for expensive sensing and feedback devices such as optical encoders. Your position is known simply by keeping track of the input step pulses.</p><
13、;p> Stepper Motor Types</p><p> There are three basic stepper motor types. They are :</p><p> ? Variable-reluctance</p><p> ? Permanent-magnet</p><p><b>
14、? Hybrid</b></p><p> Variable-reluctance (VR)</p><p> This type of stepper motor has been around for a long time. It is probably the easiest to understand from a structural point of view
15、. Figure 1 shows a cross section of a typical V.R. stepper motor. This type of motor consists of a soft iron multi-toothed rotor and a wound stator. When the stator windings are energized with DC current the poles become
16、 magnetized. Rotation occurs when the rotor teeth are attracted to the energized stator poles.</p><p> Figure 1. Cross-section of a variablereluctance(VR) motor.</p><p> Permanent Magnet (PM)&
17、lt;/p><p> Often referred to as a “tin can” or “canstock” motor the permanent magnet step motor is a low cost and low resolution type motor with typical step angles of 7.5° to 15°. (48 – 24steps/revo
18、lution) PM motors as the name implies have permanent magnets added to the motor structure. The rotor no longer has teeth as with the VR motor. Instead the rotor is magnetized with alternating north and south poles situat
19、ed in a straight line parallel to the rotor shaft. These magnetized rotor poles provide an i</p><p> Hybrid (HB)</p><p> The hybrid stepper motor is more expensive than the PM stepper motor bu
20、t provides better performance with respect to step resolution, torque and speed. Typical step angles for the HB stepper motor range from 3.6° to 0.9° (100 – 400 steps per revolution). The hybrid stepper motor c
21、ombines the best features of both the PM and VR type stepper motors. The rotor is multi-toothed like the VR motor and contains an axially magnetized concentric magnet around its shaft. The teeth on the rotor provide an &
22、lt;/p><p> The two most commonly used types of stepper motors are the permanent magnet and the hybrid types. If a designer is not sure which type will best fit his applications requirements he should first eva
23、luate the PM type as it is normally several times less expensive. If not then the hybrid motor may be the right choice.</p><p> There also excist some special stepper motor designs. One is the disc magnet m
24、otor. Here the rotor is designed sa a disc with rare earth magnets, See fig. 5 . This motor type has some advantages such as very low inertia and a optimized magnetic flow path with no coupling between the two stator win
25、dings. These qualities are essential in some applications.</p><p> Size and Power</p><p> In addition to being classified by their step angle stepper motors are also classified according to fr
26、ame sizes which correspond to the diameter of the body of the motor. For instance a size 11 stepper motor has a body diameter of approximately 1.1 inches. Likewise a size 23 stepper motor has a body diameter of 2.3 inche
27、s (58 mm), etc. The body length may however, vary from motor to motor within the same frame size classification. As a general rule the available torque output from a motor of a p</p><p> Power levels for IC
28、-driven stepper motors typically range from below a watt for very small motors up to 10 –20 watts for larger motors. The maximum power dissipation level or thermal limits of the motor are seldom clearly stated in the mot
29、or manufacturers</p><p> data. To determine this we must apply the relationship P=V×I For example, a size 23 step motor may be rated at 6V and 1A per phase. Therefore, with two phases energized</p&g
30、t;<p> the motor has a rated power dissipation of 12 watts. It is normal practice to rate a stepper motor at the power dissipation level where the motor case rises 65°C above the ambient in still air. Theref
31、ore, if the motor can be mounted to a heatsink it is often possible to increase the allowable power dissipation level. This is important as the motor is designed to be and should be used at its maximum power dissipation
32、,to be efficient from</p><p> a size/output power/cost point of view.</p><p> When to Use a StepperMotor</p><p> A stepper motor can be a good choice henever controlled movement
33、is equired. They can be used to advantage in applications where you need to control rotation angle, speed, position and synchronism. Because of the inherent advantages listed previously, stepper motors have found their p
34、lace in many different applications. Some of these include printers, plotters, highend office equipment, hard disk drives, medical equipment, fax machines, automotive and many more.</p><p> The Rotating Mag
35、netic Field</p><p> When a phase winding of a stepper motor is energized with current a magnetic flux is developed in the stator. The d When a phase winding of a stepper motor is energized with current a ma
36、gnetic flux is developed irection of this flux is determined by the “Right Hand</p><p> Rule” which states: “If the coil is grasped in the right hand with the fingers pointing in the direction of the curren
37、t in the winding (the thumb is extended at a 90° angleto the fingers), then the thumb will point in the direction of the magnetic field.”</p><p> Figure 2 shows the magnetic flux path developed when ph
38、ase B is energized with winding current in the direction shown. The rotor then aligns itself so that the flux opposition is minimized. In this case the motor would rotate clockwise so that its south pole aligns with the
39、north pole of the stator B at position 2 and its north pole aligns with the south pole of stator B at position 6. To get the motor to rotate we can now see that we must provide a sequence of energizing the stator winding
40、s in </p><p> Figure 2 Magnetic flux path through a two-pole stepper motor with a lag between the rotor and stator.</p><p> Torque Generation</p><p> The torque produced by a ste
41、pper motor depends on several factors.</p><p> ? The step rate</p><p> ? The drive current in the windings</p><p> ? The drive design or type</p><p> In a stepper m
42、otor a torque is developed when the magnetic fluxes of the rotor and stator are displaced from each other. The stator is made up of a high permeability magnetic material. The presence of this high permeability material c
43、auses the magnetic flux to be confined for the most part to the paths defined by the stator structure in the same fashion that currents are confined to the conductors of an electronic circuit. This serves to concentrate
44、the flux at the stator poles. The torque outpu</p><p> The basic relationship which defines the intensity of the magneticflux is defined by:</p><p> H = (N ×i) ÷ l where:</p
45、><p> N = The number of winding turns</p><p> i = current</p><p> H = Magnetic field intensity</p><p> l = Magnetic flux path length</p><p> This relatio
46、nship shows that the magnetic flux intensity and consequently the torque is proportional to the number of winding turns and the current and inversely proportional to the length of the magnetic flux path. From this basic
47、relationship one can see that the same frame size stepper motor could have very different torque output capabilities simply by changing the winding parameters. More detailed information on how the winding parameters affe
48、ct the output capability of the motor can be fou</p><p> Stepping Modes</p><p> The following are the most common drive modes.</p><p> ? Wave Drive (1 phase on)</p><p&
49、gt; ? Full Step Drive (2 phases on)</p><p> ? Half Step Drive (1 & 2 phases on)</p><p> ? Micro stepping (Continuously varying motor currents)</p><p> For the following disc
50、ussions please refer to the figure 3. </p><p> Figure 3 Unipolar and bipolar wound stepper motors.</p><p> In Wave Drive only one winding is energized at any given time. The stator is energiz
51、ed according to the sequence A ??B ??A ??B and the rotor steps from position 8 ??2 ??4 ??6. For unipolar and bipolar wound motors with the same winding parameters this excitation mode would result in the same mechanical
52、position. The disadvantage of this drive mode is that in the unipolar wound motor you are only using 25% and in the bipolar motor only 50% of the total motor winding at any given time. This means </p><p> I
53、n Full Step Drive you are energizingtwo phases at any given time.The stator is energized according to the sequence AB ??AB ??AB ? AB and the rotor steps from position 1 ??3 ??5 ??7 . Full step mode results in the same an
54、gular movement as 1 phase on drive but the mechanical position is offset by one half of a full</p><p> step. The torque output of the unipolar wound motor is lower than the bipolar motor (for motors with th
55、e same winding parameters) since the unipolar motor uses only 50% of the available winding while the bipolar motor uses the entire winding. </p><p> Half Step Drive combines both wave and full step (1&2
56、 phases on) drive modes. Every second step only</p><p> one phase is energized and during the other steps one phase on each stator. The stator is energized according to the sequence AB ??B ??AB ??A ??AB ??B
57、 ??AB ??A and the rotor steps from position 1 ??2 ??3 ??4 ??5 ??6 ??7 ??8. This results in angular movements that are half of those in 1- or 2-phases-on drive modes. Half stepping can reduce a phenomena referred to as re
58、sonance which can be experienced in 1- or 2-phases-on drive modes.</p><p> The excitation sequences for the above drive modes are summarized in Table 1.</p><p> Table 1. Excitation sequences f
59、or different drive modes</p><p> In Microstepping Drive the currents in the windings are continuously varying to be able to break up one full step into many smaller discrete steps. More information on micro
60、stepping can be found in the microstepping chapter.</p><p> Single Step Response and Resonances</p><p> The single-step response characteristics of a stepper motor is shown in figure 4. </p
61、><p> Figure 4 Single step response vs. time.</p><p> When one step pulse is applied to a stepper motor the rotor behaves in a manner as defined by the above curve.The step time t is the time it
62、 takes the motor shaft to rotate one step angle once the first step pulse is applied. This step time is highly dependent on the ratio of torque to inertia (load) as well as the type of driver used.</p><p>
63、Since the torque is a function of the displacement it follows that the acceleration will also be. Therefore, when moving in large step increments a high torque is developed and consequently a high acceleration. This can
64、cause over shots and ringing as shown. The settling time T is the time it takes these oscillations or ringing to cease. In certain applications this phenomena can be undesirable. It is possible to reduce or eliminate thi
65、s behaviour by microstepping the stepper motor. For more inf</p><p> Stepper motors can often exhibit a phenomena refered to as resonance at certain step rates. This can be seen as a sudden loss or drop in
66、torque at certain speeds which can result in missed steps or loss of synchronism. It occurs when the input step pulse rate coincides with the natural oscillation frequency of the rotor. Often there is a resonance area ar
67、ound the 100 – 200 pps region and also one in the high step pulse rate region. The resonance phenomena of a stepper motor comes from its basic </p><p><b> 中文譯文</b></p><p><b>
68、 步進(jìn)電機(jī)基礎(chǔ)</b></p><p> [林鐵國(guó),張建勛.基于DSP的微控制器的步進(jìn)電機(jī)控制和自動(dòng)化, 2004 。第五次世界代表大會(huì)第五冊(cè)15-19日, 2004年6月.]</p><p> 步進(jìn)電機(jī)是一種機(jī)電設(shè)備,它把電氣轉(zhuǎn)換成脈沖離散機(jī)械動(dòng)作。當(dāng)電器指揮脈沖以正確的順序應(yīng)用時(shí),軸或主軸步進(jìn)電機(jī)旋轉(zhuǎn)一步離散增量。電動(dòng)機(jī)轉(zhuǎn)動(dòng)對(duì)這些應(yīng)用輸入脈沖有幾種直接聯(lián)系。應(yīng)用脈沖的序
69、列與電機(jī)軸旋轉(zhuǎn)方向直接相關(guān)。電機(jī)軸旋轉(zhuǎn)的速度與輸入脈沖的頻率直接相關(guān),旋轉(zhuǎn)的長(zhǎng)度與應(yīng)用輸入脈沖的數(shù)字輸入直接相關(guān)。</p><p> 步進(jìn)電機(jī)的優(yōu)點(diǎn)和缺點(diǎn):</p><p> 優(yōu)點(diǎn):1. 電機(jī)旋轉(zhuǎn)的角度與脈沖輸入成正比;</p><p> 2. 如果繞組被加強(qiáng),電機(jī)轉(zhuǎn)距會(huì)完全靜止;</p><p> 3. 因?yàn)榱己玫牟竭M(jìn)電機(jī)有3
70、%-5%的準(zhǔn)確率而且即使有錯(cuò)誤,也不是從一步累計(jì)到另一步的,所以步進(jìn)機(jī)能夠精確定位并且可重復(fù)性運(yùn)動(dòng);</p><p> 4.對(duì)啟動(dòng)/停止/旋轉(zhuǎn)有良好的反應(yīng);</p><p> 5. 因?yàn)殡姍C(jī)上沒(méi)有連接點(diǎn),所以它非??煽俊k姍C(jī)的壽命是由軸承的壽命決定的;</p><p> 6. 電機(jī)對(duì)數(shù)字輸入脈沖的反應(yīng)提供提供開(kāi)放環(huán)路的控制,這使得電機(jī)控制起來(lái)比較容易而且不那么
71、昂貴;</p><p> 7. 在直接地結(jié)合對(duì)軸的裝載時(shí),它是可能達(dá)到非常低速的同步自轉(zhuǎn)的;</p><p> 8. 當(dāng)速度與輸入脈沖的頻率成比例時(shí),就可以實(shí)現(xiàn)大范圍的旋轉(zhuǎn)速度</p><p> 缺點(diǎn):1. 如果不恰當(dāng)?shù)乜刂瓶赡軙?huì)發(fā)生共鳴;</p><p> 2. 如果速度太快就不易操縱;</p><p&g
72、t;<b> 開(kāi)環(huán)操作:</b></p><p> 步進(jìn)機(jī)的一個(gè)顯著優(yōu)勢(shì)就是它的功能能在開(kāi)環(huán)系統(tǒng)中被準(zhǔn)確控制。開(kāi)環(huán)控制意味著對(duì)需要的位置是沒(méi)有反饋信息的。這類(lèi)型的控制系統(tǒng)消除了對(duì)昂貴感應(yīng)與反饋設(shè)置例如對(duì)光學(xué)編碼器等的需要。通過(guò)跟蹤輸入脈沖就能很容易地知曉您所處的位置。</p><p><b> 步進(jìn)機(jī)類(lèi)型:</b></p>&
73、lt;p> 有三種步進(jìn)機(jī)類(lèi)型,它們是:</p><p><b> 1.可變磁阻型;</b></p><p><b> 2.永久磁場(chǎng)型;</b></p><p><b> 3.雜交復(fù)合型;</b></p><p><b> 可變磁阻型:</b>
74、;</p><p> 這種步進(jìn)電機(jī)已存在了很長(zhǎng)的時(shí)間.從結(jié)構(gòu)的觀點(diǎn)來(lái)看它可能是最容易理解的。圖1顯示了典型的可變磁阻型步進(jìn)機(jī)的截面。這種電機(jī)是由一個(gè)軟鐵多齒轉(zhuǎn)子和創(chuàng)傷定子構(gòu)成的。當(dāng)定子繞組電源被直流電強(qiáng)化,電機(jī)的兩極就被磁化了。當(dāng)轉(zhuǎn)子齒被吸引到磁化的兩極時(shí),電機(jī)就轉(zhuǎn)動(dòng)了。</p><p> 圖1 可變磁阻型步進(jìn)機(jī)的截面</p><p><b> 永
75、久磁場(chǎng)型:</b></p><p> 這種電機(jī)通常被稱(chēng)作“罐”或“傾斜”電機(jī)。這種永久磁場(chǎng)型電機(jī)是一種低成本和低分辨率類(lèi)型的電機(jī),它典型的分辨角度是7.5°到15°。永久磁場(chǎng)型步進(jìn)電機(jī)顧名思義有永磁材料添加到電機(jī)結(jié)構(gòu)中。與可變磁阻型電機(jī)相比,這種類(lèi)型的電機(jī)轉(zhuǎn)子不再有齒,取而帶之的是轉(zhuǎn)子隨著電機(jī)南北兩極交替位于一條直線平行于轉(zhuǎn)子軸而磁化。這些磁化的轉(zhuǎn)子級(jí)為電機(jī)提供一種增加的磁性漲潮
76、強(qiáng)度,也因此這種類(lèi)型的步進(jìn)機(jī)與可變磁阻型步進(jìn)機(jī)相比具有更高級(jí)的轉(zhuǎn)距特征。</p><p><b> 雜交復(fù)合型:</b></p><p> 混合型步進(jìn)機(jī)比永久磁場(chǎng)型步進(jìn)機(jī)要貴,但是因?yàn)榭紤]到了步距,轉(zhuǎn)距以及速度,它的表現(xiàn)要比永久磁場(chǎng)型步進(jìn)機(jī)表現(xiàn)優(yōu)良。對(duì)于雜交復(fù)合型步進(jìn)機(jī)而言,典型的步距角度是從3.6° 到 0.9°?;旌鲜讲竭M(jìn)機(jī)中和了可變磁阻型
77、步進(jìn)機(jī)和永久磁場(chǎng)型步進(jìn)機(jī)的優(yōu)良特征。轉(zhuǎn)子像可變磁阻型步進(jìn)機(jī)一樣是多齒型的,并含有磁化軸同心圓磁鐵繞其軸。轉(zhuǎn)子上的齒提供了一條更好的路徑,它有助于有助于引導(dǎo)磁通量為首選地點(diǎn)氣隙。與以上兩種類(lèi)型的步進(jìn)機(jī)相比,這進(jìn)一步增加了定位、控股及動(dòng)態(tài)轉(zhuǎn)矩特性。</p><p> 兩種最常用類(lèi)型的步進(jìn)機(jī)是永久磁場(chǎng)型步進(jìn)機(jī)和混合型步進(jìn)機(jī)。如果一個(gè)設(shè)計(jì)師不知道哪種步進(jìn)機(jī)是最適合其應(yīng)用需求的,他應(yīng)該首先評(píng)估挑選永久磁場(chǎng)型的,因?yàn)樗ǔ?/p>
78、是最便宜的。如果永久磁場(chǎng)型步電機(jī)不行的話,那么混合型的也許會(huì)是合適的選擇。</p><p> 同樣,還存在一些特殊類(lèi)型的步進(jìn)機(jī)。一種是盤(pán)式永磁步進(jìn)機(jī)。這里的轉(zhuǎn)子是用稀土永磁材料制成的,設(shè)計(jì)得像一張唱片。(見(jiàn)圖2)這型發(fā)動(dòng)機(jī)具有一些優(yōu)勢(shì),例如很低的惰性和沒(méi)有圍繞在兩定子之間的優(yōu)化磁流路。這些品性在某些應(yīng)用中是必不可少的。</p><p> 圖2 磁通通過(guò)兩桿步進(jìn)電機(jī)的轉(zhuǎn)子和定子之間&l
79、t;/p><p><b> 尺寸和功能:</b></p><p> 除了按自己的步距角度分類(lèi)之外,步進(jìn)機(jī)也按與電機(jī)直徑相關(guān)的整體尺寸來(lái)分類(lèi)。例如一個(gè)尺寸為11的步進(jìn)機(jī)直徑大約為1.1英寸。同樣大小為23的步進(jìn)機(jī)直徑為2.3英寸( 58毫米)。整體大小相同的步進(jìn)機(jī)由于屬于不同的機(jī)子在機(jī)身長(zhǎng)度上可能會(huì)有變化,作為一般規(guī)則,某一特定尺寸電動(dòng)機(jī)的可供輸出力矩隨機(jī)身長(zhǎng)度的增加而
80、增加。</p><p> 功率級(jí)集成電路驅(qū)動(dòng)步進(jìn)電機(jī)一般由對(duì)非常小電機(jī)的1瓦特到對(duì)大型電機(jī)的10-20瓦特。在汽車(chē)制造商的資料里,電機(jī)的最高功耗水平和熱量限制很少明確表示出來(lái)。為了證明這一點(diǎn),我們必須運(yùn)用關(guān)系式P=V×I,例如:大小為23的步進(jìn)電機(jī),每階段可在額定的6V和1A,因此,兩相電源的電動(dòng)機(jī)的額定功耗為12瓦特。測(cè)量步進(jìn)機(jī)的熱量揮發(fā)水平,這是通常的做法。在靜止的空氣中,步進(jìn)機(jī)的熱量上升到65&
81、#176;。如果電動(dòng)機(jī)可以掛載到一個(gè)散熱器也常常能夠增加允許功耗水平,這一點(diǎn)很重要,因?yàn)椴竭M(jìn)機(jī)的設(shè)計(jì)要求它應(yīng)該從它的最高功耗、尺寸輸出功率或者尺寸輸出成本的角度來(lái)加以使用。</p><p><b> 何時(shí)使用步進(jìn)電機(jī)</b></p><p> 當(dāng)需要控制運(yùn)動(dòng)時(shí),步進(jìn)電機(jī)可以成為很好的選擇。當(dāng)你需要控制旋轉(zhuǎn)角度,速度,位置和同步時(shí),它們能夠在應(yīng)用中發(fā)揮優(yōu)勢(shì)。因?yàn)樽陨?/p>
82、固有的優(yōu)勢(shì),步進(jìn)電機(jī)在多種不同的應(yīng)用種都找到了它們的位置。其中一些項(xiàng)目包括打印機(jī)、繪圖儀、精品辦公設(shè)備、電腦硬盤(pán)、醫(yī)療設(shè)備、傳真機(jī),汽車(chē)和更多。</p><p><b> 旋轉(zhuǎn)磁場(chǎng) </b></p><p> 當(dāng)一相繞組的步進(jìn)電機(jī)電源電流與磁是發(fā)達(dá)的定子,電流的方向是由“右手定則”決定的?!坝沂侄▌t”規(guī)定:“若磁力線垂直進(jìn)入右手,四指所指方向?yàn)閷?dǎo)線中感應(yīng)電流的方向
83、,則大拇指所指的方向就是磁場(chǎng)的方向?!?lt;/p><p> 圖5顯示了磁通路徑發(fā)展,B階段隨著所示繞組電流的方向而加強(qiáng)。轉(zhuǎn)子控制自己使反向流量最低。在這種情況下將電機(jī)順時(shí)針轉(zhuǎn)動(dòng),使南極配合北極的定子B在位置2和北極配合南極定子B在位置6 , 獲得電機(jī)輪換。為了讓步進(jìn)電機(jī)轉(zhuǎn)動(dòng),我們現(xiàn)在可以看到,我們必須提供一組序列定子,這組定子可以提供一個(gè)旋轉(zhuǎn)磁場(chǎng),由于磁吸引力,帶動(dòng)定子轉(zhuǎn)動(dòng)。</p><p&g
84、t; 扭矩代轉(zhuǎn)矩控制取決于若干因素:</p><p><b> .步距;</b></p><p><b> .繞組驅(qū)動(dòng)電流;</b></p><p><b> .驅(qū)動(dòng)設(shè)計(jì)或類(lèi)型;</b></p><p> 在一個(gè)步進(jìn)電機(jī)中,當(dāng)定子和轉(zhuǎn)子的磁流量彼此取代時(shí),扭距才發(fā)生變
85、化。定子是由高滲透磁性物質(zhì)組成的,這種高滲透磁性物質(zhì)的存在導(dǎo)致磁流量被部分地限定,這有助于磁流量集中在定子兩極。當(dāng)繞組加強(qiáng)時(shí),電機(jī)的扭力輸出與磁流量產(chǎn)生的強(qiáng)度成比例。</p><p> 界定磁流量的基本項(xiàng):</p><p> H = (N ×i) ÷ l</p><p><b> N :匝數(shù)</b></p>
86、<p><b> i :電流</b></p><p><b> H:磁場(chǎng)強(qiáng)度</b></p><p><b> L:磁流量路徑長(zhǎng)度</b></p><p> 這種關(guān)系表明磁場(chǎng)強(qiáng)度與扭距同匝數(shù)和電流成正比,與磁流量路徑長(zhǎng)度成反比。從這一基本關(guān)系可以看出可以看出同樣的磁流量路徑長(zhǎng)度,
87、不同的步進(jìn)電機(jī)通過(guò)改變繞組參數(shù)可以有不同的輸出力矩。更詳細(xì)的資料關(guān)于繞組參數(shù)如何影響步進(jìn)機(jī)輸出量可以在題為“驅(qū)動(dòng)電流基礎(chǔ)”的應(yīng)用說(shuō)明中找到。</p><p><b> 步進(jìn)模式</b></p><p> 下列各項(xiàng)是最通常的驅(qū)動(dòng)模式</p><p> 1. 波動(dòng)驅(qū)動(dòng)(在1 狀態(tài))</p><p> 2. 半步驅(qū)動(dòng)(
88、在2狀態(tài))</p><p> 3. 全步驅(qū)動(dòng)(在1和2狀態(tài))</p><p> 4. 細(xì)分步進(jìn)(不斷地改變電機(jī)的電流)</p><p> 對(duì)于下列的討論如圖3所示</p><p><b> 圖3 單極步進(jìn)電機(jī)</b></p><p> 在波動(dòng)驅(qū)動(dòng)中只有一個(gè)線圈轉(zhuǎn)動(dòng)在任何接通時(shí)間。按照A
89、??B ??A ??B的順序驅(qū)動(dòng)和轉(zhuǎn)子的轉(zhuǎn)動(dòng)為8 ??2 ??4 ??6。對(duì)于和相同的參數(shù)的單極和有兩極的電機(jī),這一個(gè)脈沖模式會(huì)運(yùn)行相同的機(jī)械位置。這一個(gè)驅(qū)動(dòng)模式的缺點(diǎn)是在單極的電機(jī)只有在只有25% 被使用和在有兩極的電機(jī)中在任何的運(yùn)行時(shí)間的只有 50% 的總計(jì)電機(jī)轉(zhuǎn)動(dòng)。這表示你沒(méi)有在從電機(jī)運(yùn)行中得到最大的轉(zhuǎn)力矩輸出。</p><p> 在全步驅(qū)動(dòng)時(shí)在任何接同時(shí)間有2個(gè)脈沖周期。按照AB ??AB ??AB ?
90、 AB 和轉(zhuǎn)子的轉(zhuǎn)動(dòng)為1 ??3 ??5 ??7。全部驅(qū)動(dòng)在驅(qū)動(dòng)方式和1狀態(tài)相同有角動(dòng)但是機(jī)械的移動(dòng)位置全部被彌補(bǔ)一半。因?yàn)閱螛O的電機(jī)使用,單極電機(jī)的轉(zhuǎn)力矩輸出比兩極的電機(jī) (對(duì)于和相同的參數(shù)馬達(dá)) 低只有 50% , 有兩極的電機(jī)可以用全周期。</p><p> 半步驅(qū)動(dòng)整合了波動(dòng)和全部驅(qū)動(dòng) (在1和2 脈沖)的驅(qū)動(dòng)形式。每?jī)蓚€(gè)脈沖逐步運(yùn)行被激活并在其他運(yùn)行周期在每個(gè)固定的狀態(tài)。按照AB ??B ??AB ?
91、?A ??AB ??B ??AB ??A和轉(zhuǎn)子轉(zhuǎn)動(dòng)為1 ??2 ??3 ??4 ??5 ??6 ??7 ??8結(jié)果在角運(yùn)動(dòng),有一半是在1或2階段--驅(qū)動(dòng)方式. 半步驅(qū)動(dòng),可以減少的現(xiàn)象稱(chēng)為共振,可以在經(jīng)歷了1或2階段的驅(qū)動(dòng)方式。</p><p> 上述驅(qū)動(dòng)方式激發(fā)觸發(fā)順序如表1</p><p> 表1 驅(qū)動(dòng)方式激發(fā)觸發(fā)順序</p><p> 步進(jìn)驅(qū)動(dòng)電流繞組不
92、斷改變形成許多較小的離散步驟. 更多信息細(xì)分,可以發(fā)現(xiàn)在步進(jìn)。 </p><p><b> 單步響應(yīng)</b></p><p> 步進(jìn)電機(jī)單步響應(yīng)特性如圖4所示</p><p> 如圖4 步進(jìn)電機(jī)單步響應(yīng)特性</p><p> 當(dāng)脈沖采用了步進(jìn)電機(jī)轉(zhuǎn)子的運(yùn)行方式到上述步驟曲線時(shí)間t的時(shí)候,它采取的電機(jī)軸轉(zhuǎn)動(dòng)一個(gè)步
93、距角,第一步是脈沖應(yīng)用. 這一步的時(shí)間是高度依賴(lài)比率轉(zhuǎn)矩慣性(負(fù)載) ,以及使用的驅(qū)動(dòng)種類(lèi)。由于扭矩是一個(gè)函數(shù)的位移所以接下來(lái)的加速度也將. 因此,當(dāng)移動(dòng)大型梯級(jí)遞增高轉(zhuǎn)矩發(fā)達(dá),因此一個(gè)高加速度. 這可引起了長(zhǎng)鳴所示. 沉降時(shí)間T是要花時(shí)間,因此這些振蕩或鈴聲停止. 在某些應(yīng)用這一現(xiàn)象可不可取. 它可以減少或消除這種行為的細(xì)分步進(jìn)電機(jī). 由于扭矩是一個(gè)函數(shù)的位移所以接下來(lái)的加速度也將. 因此,當(dāng)移動(dòng)大型梯級(jí)遞增高轉(zhuǎn)矩發(fā)達(dá),因此一個(gè)高加速
94、度. 沉降時(shí)間T是要花時(shí)間,因此這些振蕩或周期停止. 在某些應(yīng)用這一現(xiàn)象. 它可以減少或消除這種行為的細(xì)分步進(jìn)電機(jī). </p><p> 步進(jìn)電機(jī)往往能表現(xiàn)出的現(xiàn)象稱(chēng)為共振, 這可以看作一個(gè)突然喪失或下降時(shí)轉(zhuǎn)矩轉(zhuǎn)速一定能夠?qū)е侣┎襟E或失去同步. 當(dāng)它發(fā)生時(shí),輸入階躍脈沖率剛好與自然振蕩頻率有關(guān). 共振現(xiàn)象的一個(gè)步進(jìn)電機(jī)來(lái)自其基礎(chǔ)設(shè)施建設(shè),因此不可能消除. 這也是取決于負(fù)載的情況. 它可以減少電機(jī)驅(qū)動(dòng)在半步或微步
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 步進(jìn)電機(jī)外文翻譯
- 外文翻譯--步進(jìn)電機(jī)的工作原理
- 步進(jìn)電機(jī)應(yīng)用和控制外文翻譯
- 外文翻譯--步進(jìn)電機(jī)的工作原理.doc
- 外文翻譯--步進(jìn)電機(jī)的工作原理.doc
- 步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制外文翻譯
- 外文翻譯--步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制
- 步進(jìn)電機(jī)的單片機(jī)控制外文翻譯
- 關(guān)于步進(jìn)電機(jī)的畢業(yè)設(shè)計(jì)外文翻譯
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯---步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯。步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯---步進(jìn)電機(jī)和伺服電機(jī)的系統(tǒng)控制.doc
- 外文翻譯--步進(jìn)電機(jī)運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論