版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 中文1955字</b></p><p> Influence of Impact Energy on Impact Corrosion abrasion of high Manganese Steel</p><p><b> Abstract</b></p><p> The impa
2、ct corrosion.a(chǎn)brasion properties and mechanism of high manganese steel were investigated under different impact energies.The result shows that the wearability of the steel decreases with the increase of the impact energy
3、.The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling.It transforms to shallow-layer fatigue flaking along with serious corrosion.a(chǎn)brasio
4、n when the impact energy is increased,and finally ch</p><p> deep work-hardening and heavy corrosion-abrasion.</p><p> Key words:wear characteristics;abrasion mechanism;impact energy;high mang
5、anese steel;impact corrosion-abrasion</p><p> 1 Introduction</p><p> It has been confirmed by intensive studies that impact, corrosion and abrasion enhance each other in the corrosion—abrading
6、 procession under a low impact energy.The strain—difference cell induced by the higher dislocation density of pits’ and grooves’ bulging edge comparing to the pit’s bottom,in which pits and grooves are generated by abras
7、er’s rubbing and impacting the surface of material,and the accelerated brittle flaking by environmental brittleness under impact—erosion condition. That int</p><p> energy(<2 J/cm2)condition.It does not
8、 conform to mining wet mill grinder’s service conditions(impact energy is over 2 J/cm2).In fact,under a higher impact force,the stress borne by material is different from that in low impact force,and even the failure mec
9、hanism in impact corrosive-abrasion process is also different. Therefore,the study on the influence of the impact energy under a high impact force on impact corrosion-abrasion has theoretical sense and actual reference v
10、alue.</p><p> 2 Experimental</p><p> High manganese steel which was poured into cast after smelting was chosen as tested material.After l050℃ water toughening,the microstructure of experimenta
11、l steel was fall austensite, whose hardness was HB214,impact toughness was 147J/cm2.The cast ingot was linear cut into l0mm×l0mmn×30mm impact corrosion-abrasion </p><p> specimens。</p>&l
12、t;p> High stress impact corrosion-abrasion experiment was carried out in an MLD.1 0 impact corrosion wear tester.Upper sample was cleaned in an ultrasonic cleaning machine with acetone before the test and fixed on th
13、e tester after drying and weighing.It moved up and down following with the hammer, whose frequency was 200 times/min.Testing medium was acid iron ore slurry whose pH value was 4,in which abrasers were 5-6mm diameter iron
14、 ore particles(whose value of Muhs hardness was 7.5)and the ratio of </p><p> were weighed and the mass loss was measured in order to determine the wear property. The wear surface morphologies of impact cor
15、rosion—abrasion specimens were observed and analyzed by an X-650 scanning electron microscope.The specimens were cut perpendicularly to wear surface,and an Olympus PME optical microscope was used to study the microstruct
16、ure and crack in subsurface stratum below the wear surface.</p><p> 3 Impact energy and impact corrosion-abrasion characteristies</p><p> In the case of a low impact energy of2.0J,its steady w
17、ear</p><p> stage was longer.And with the increase of the impact energy,the running-in stage and steady wear stage were shorten obviously.Under 2.5J impact energy, the heavy wear stage was reached after abo
18、ut 6 hours.Its acceleration wear stage was put forward to 4 hours under 3.0J </p><p> impact energy.</p><p> According to the comparison of mass loss rate,with the increase of the impact energ
19、y,the impact corrosion-abrading mass loss of high manganese steel increased apparently.When being worn for 2 hours,the rate of impact corrosion-abrading weight loss was 1:</p><p> 3:7 at 2.0J,2.5 J,and 3.0J
20、 impact energy ,respectively.</p><p> When being worn for 8 hours.it was 1:3.5:18.After being worn for 16 hours,the samples under 3.0J impact energy were already worn seriously, and the rate of weight loss
21、under 2.0 J and 2.5J impact energy was 1:6.These results show the accelerating effect of impact on corrosion </p><p><b> wear.</b></p><p> The result mentioned above shows that hig
22、h manganese steel had a better impact corrosion-abrasion resistance under a lower impact energy.As the impact energy increased,its wearability dropped apparently.Especially when the impact energy increased to 3.0J,the im
23、pact corrosion-abrasion resistance became very low.According to the discussion of wear mechanism,it could be seen that high manganese steel had a preferable corrosion resistance to slow down the formation and deepening o
24、f corrosion pits ef</p><p> there.So the alloy had a good wear resistance.</p><p> Along with the increase of the impact energy, the dominant failure mechanism of high manganese steel being im
25、pact corrosion—abrased changed from surface chiseling,breaking of extrusion edge along root and slight shallow-layer spalling,to deep flaking and heavy corrosion.a(chǎn)brasion.Crack originated in subsurface stratum and was in
26、dependent of surface corroding.So the preferable corrosion resistance had not obvious effect on enhancing impact corrosion-abrasion resistance of high manganese steel unde</p><p> Under a high stress,the se
27、rious plastic deformation in surface layer and subsurface layer led to heavier work hardening and higher stress concentration.So crack was easier to form and propagate in it under higher shear stress component of impact
28、force than in other original harder alloy.The flaking was heavy.Therefore,the impact corrosion-abrasion resistance was worse for high manganese steel in the </p><p> case of high impact stress.</p>&
29、lt;p> 4 Conclusions</p><p> a)Under impact corrosion-abrasion condition,the wearability of high manganese steel dropped obviously with the increase of the impact energy.When the impact energy was 2.0J,h
30、igh manganese steel presented a better impact corrosion—abrasion resistance.It had a very low impact corrosion abrasion resistance when the impact energy was </p><p> raised to 3.0J.</p><p> b
31、)As the value of impact energy was different,the impact corrosion-abrasion failure mechanism of high manganese steel was different.With the impact energy increasing,the failure mechanism changed from breaking of extrusio
32、n edge along root,slight shallow-layer flaking and corrosion wear to shallow-layer fatigue flaking accompanying with serious corrosion-abrasion,and then to massive flaking of hardened layer caused by deep hardening and h
33、eavy corrosion-abrasion finally.</p><p> c)Under 2.0J impact energy,the shallow fatigue flaking crack,which led alloy to be worn,mainly originated at the micropore or high density dislocation area in subsur
34、face layer.In this case,the bottom of pits on wear surface could become the source of crack.Under 3.0J impact energy,crack originated from crystal defect area and led to deep flaking.The flaking had not obvious relations
35、hip to surface corrosion.</p><p> 沖擊能量對(duì)高錳鋼的沖擊腐蝕磨損的影響</p><p><b> 摘要</b></p><p> 本文對(duì)沖擊腐蝕磨損性能和高錳鋼機(jī)理在不同的沖擊能量情況下進(jìn)行了研究,結(jié)果表明,該鋼的耐磨性與沖擊能量主要失效機(jī)制以較低的沖擊能量的增加而減小的破裂擠壓邊緣沿根和淺層輕微剝落。
36、將其轉(zhuǎn)換為淺層疲勞隨著腐蝕嚴(yán)重磨損剝落時(shí)的沖擊能量的增加,并最</p><p> 終改變而引起的硬化層的堆積剝落,深加工硬化和嚴(yán)重的腐蝕磨損。</p><p> 關(guān)鍵詞:耐磨等特點(diǎn);磨損機(jī)理,沖擊能量,高錳鋼,沖擊腐蝕磨損</p><p><b> 引言</b></p><p> 通過深入細(xì)致的研究已經(jīng)證實(shí)這種影
37、響,低沖擊能量的腐蝕和磨損增強(qiáng)彼此的抗腐蝕磨損。誘導(dǎo)的凹坑及凹槽進(jìn)行比較,其中凹坑和凹槽都受到磨蝕產(chǎn)生的鼓出邊緣的摩擦而影響材料的表面的錯(cuò)位密度增加,并且加速在環(huán)境脆性沖擊侵蝕條件下的脆性剝落。這是由于腐蝕合金碳化物引起的剝落,而腐蝕介質(zhì)被擠壓成裂縫,促進(jìn)裂紋的發(fā)展,從而加速造成腐蝕的加速磨損和腐蝕剝落。顯然,腐蝕磨損的沖擊應(yīng)力下的行為和機(jī)制是相關(guān)的,以傳統(tǒng)的沖擊腐蝕磨損實(shí)驗(yàn)的影響值(<2 J/cm2的)在較低的影響下已完成能量條
38、件.它不符合礦山濕式粉碎機(jī)的服務(wù)條件(沖擊能量超過2 J/cm2的),事實(shí)上,在較高的沖擊力下,由材料所承受的壓力是不同的,在低的沖擊力下,沖擊腐蝕磨損過程中的失效機(jī)理也不同。因此,本研究對(duì)沖擊能量下的沖擊腐蝕磨損高沖擊力的影響具有一定的理論意義和實(shí)際參考價(jià)值。</p><p><b> 實(shí)驗(yàn)</b></p><p> 高錳鋼其倒入鑄鐵熔煉后,被選為測(cè)試材料。之后
39、經(jīng)過1050℃的水增韌,試驗(yàn)鋼的顯微組織為奧氏體下降,其硬度為HB214,沖擊韌性147J/cm2。將鑄錠線性切割成l0mm×l0mmn×30毫米沖擊腐蝕磨損標(biāo)本。</p><p> 高應(yīng)力沖擊腐蝕磨損實(shí)驗(yàn)是試驗(yàn)前將一個(gè)MLD.10沖擊腐蝕磨損樣品用丙酮在超聲波清洗機(jī)中進(jìn)行清洗和干燥而后上下移動(dòng)固定在測(cè)試儀上,錘子擺動(dòng)頻率為200次/ min.試驗(yàn)培養(yǎng)基為酸鐵礦石漿料,其pH值為4,其中酸鐵
40、礦石為5-6毫米直徑的鐵礦石顆粒(其MUHS硬度值為7.5),按照去離子水與鐵礦石顆粒比例為5點(diǎn)08進(jìn)入摩擦表面之間的空間,將樣品用丙酮進(jìn)行超聲波洗滌后,通過攪拌裝置對(duì)干燥磨損樣品研磨。稱重并測(cè)量,以確定磨損特性的質(zhì)量損失。對(duì)沖擊腐蝕磨損試樣的磨損表面形貌進(jìn)行觀察和分析,通過X-650掃描電鏡標(biāo)本切成垂直于表面的磨損,以及PME奧林巴斯光學(xué)顯微鏡來研究微觀結(jié)構(gòu)和裂紋底下的磨損面。</p><p> 沖擊能量和沖
41、擊腐蝕磨損性征</p><p> 在低沖擊能量2.0J下,其穩(wěn)定磨損的情況下,沖擊能量的增加,會(huì)使磨合階段和穩(wěn)定磨損階段被縮短。在2.5J的沖擊能量下,達(dá)到嚴(yán)重磨損階段大約6小時(shí)之后,提出了3.0J的沖擊能量下磨損階段4小時(shí)。</p><p> 根據(jù)質(zhì)量損失率的比較,沖擊能量的增加,高錳鋼的沖擊腐蝕磨損質(zhì)量損失增加,,沖擊腐蝕磨損重量損失率分別為1: 3.07,在2.0J,2.5 J和
42、3.0J的沖擊能量下當(dāng)被穿著8小時(shí)后,它分別為1:3.5:18。16小時(shí)后,在3.0J的沖擊能量將樣品已經(jīng)磨損嚴(yán)重,在2.0J和2.5J的沖擊能量下體重減輕的比率是1 :6。結(jié)果表明沖擊對(duì)腐蝕磨損的起加速作用。</p><p> 上述結(jié)果表明,高錳鋼具有下一個(gè)較低的沖擊能更好地影響防腐耐磨性。隨著沖擊能量增加,其耐磨性明顯下降。特別沖擊能量提高到3.0J時(shí)沖擊耐蝕耐磨損性變得非常低。根據(jù)磨損機(jī)理,可以看出,因?yàn)?/p>
43、它是單相奧氏體鋼,高錳鋼有一個(gè)優(yōu)選的耐腐蝕性,以有效地減緩腐蝕坑的形成和深化。它能防止形成微裂紋的起源出現(xiàn)在腐蝕坑的底部。裂紋只可是在變形后已積累部分能量值的變形微孔或高密度位錯(cuò)區(qū)。在低沖擊能量的條件下,因?yàn)檩^小的變形和應(yīng)力集中出現(xiàn),裂紋是不容易形成和傳播地下地層。所以該合金具有良好的耐磨性。</p><p> 伴隨著沖擊能量的增加,高錳鋼是影響腐蝕磨蝕主要的故障機(jī)制,從表面鑿毛,沿根和輕微淺層剝落擠壓邊緣斷裂
44、,至深剝落和嚴(yán)重的腐蝕。裂紋起源于亞表層,是獨(dú)立的表面。所以,最好的耐腐蝕性,對(duì)提高高錳鋼高應(yīng)力沖擊腐蝕、耐磨損并不明顯效果。它的磨損機(jī)理是相似的沖擊磨損條件下的疲勞剝落效果明顯,其中耐磨性取決于合金的硬度和韌性。</p><p> 在較高下的應(yīng)力情況下,表層和次表層的嚴(yán)重塑性變形導(dǎo)致較重的加工硬化和更高的應(yīng)力集中。因此,沖擊力較高情況下裂紋更容易形成和剪切應(yīng)力分量比其他材料更難在合金中傳播,剝落嚴(yán)重。因此高沖
45、擊壓力下高錳鋼沖擊腐蝕、耐磨損較差。</p><p><b> 結(jié)論</b></p><p> 在沖擊腐蝕磨損條件下,沖擊增加高錳鋼耐磨性明顯下降。當(dāng)沖擊能量為2.0J,高錳鋼顯現(xiàn)出了一個(gè)更好的沖擊腐蝕磨損性能。當(dāng)沖擊能量升高至3.0J它有一個(gè)非常低的沖擊腐蝕耐磨性時(shí)。</p><p> 隨著沖擊能量的改變,高錳鋼的沖擊腐蝕磨損失效機(jī)理是
46、不同的。隨著沖擊能量增加,失效機(jī)理是從擠壓破碎的邊緣沿根部發(fā)生變化,伴隨輕微的淺層剝落和腐蝕磨損到有嚴(yán)重腐蝕磨損淺層疲勞剝落,然后引起的深硬化和重腐蝕磨損最終硬化層的塊狀剝落。</p><p> 在2.0J沖擊能量,淺層疲勞剝落裂紋,從而導(dǎo)致合金被磨損,主要源于在次表層微孔或高密度位錯(cuò)區(qū)。在這種情況下,在這種情況下,凹坑的上磨耗面的底部有可能成為裂紋源。在3.0J沖擊能量,裂紋起源于晶體缺陷區(qū),導(dǎo)致深層剝落。剝
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 成分、組織及沖擊功對(duì)稀土改性高錳鋼沖擊腐蝕磨損機(jī)理影響的研究.pdf
- 高錳鋼轍叉機(jī)械沖擊預(yù)硬化的研究.pdf
- 沖擊功、沖擊角對(duì)濕磨襯板鋼沖擊腐蝕磨損機(jī)理影響.pdf
- 成分、組織及沖擊功對(duì)濕磨襯板用鋼沖擊腐蝕磨損機(jī)理影響的研究.pdf
- ZGMn13Cr2高錳鋼不同條件下加工硬化及沖擊磨損行為研究.pdf
- 成分、組織及沖擊功對(duì)以錳代鎳低碳高合金鋼沖擊腐蝕磨損機(jī)理影響的研究.pdf
- 高錳鋼的切削加工
- 鈮對(duì)高錳鋼微觀組織及其性能的影響.pdf
- 成分與組織對(duì)鋼的沖擊腐蝕磨損特性與機(jī)制的影響及其機(jī)理研究.pdf
- 沖擊功對(duì)濕磨襯板用鋼在腐蝕條件下沖擊磨損性能與機(jī)理影響的研究.pdf
- 合金化處理對(duì)高錳鋼組織和性能的影響.pdf
- 高錳鋼時(shí)效的研究.pdf
- 鉻含量對(duì)低碳合金鋼沖擊腐蝕磨損性能和機(jī)理影響的研究.pdf
- 合金化高錳鋼與超高錳鋼強(qiáng)韌化及耐磨性的研究.pdf
- 高錳鋼分類及簡介
- 鎳在高錳鋼中的作用
- 新型礦山濕磨機(jī)襯板鋼在不同介質(zhì)和沖擊功下的沖擊腐蝕磨損性能.pdf
- 典型機(jī)床沖擊能量的計(jì)算
- 濕磨襯板新材質(zhì)開發(fā)及沖擊腐蝕磨損機(jī)理的研究.pdf
- 激光沖擊對(duì)304奧氏體不銹鋼腐蝕性能的影響.pdf
評(píng)論
0/150
提交評(píng)論