版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 英文原文 Components of A Building and Tall Buildings</p><p><b> Andre</b></p><p> 1. Abstract</p><p> Material
2、s and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators,
3、 heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure and foundation is that part of a building below ground.</p><p> The skys
4、craper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.G
5、ustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower
6、, 984 feet (300 meters) high, was the tallest struct</p><p> Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale
7、 in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour.</p><p> 2. Load-Carrying Frame</p><p> Until the late 19th century, the exterior wall
8、s of a building were used as bearing walls to support the floors. This construction is essentially a post and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited
9、the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Building built in the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, Willia
10、m Le Baron Jen</p><p> All tall buildings were built with a skeleton of steel until World War Ⅱ. After the war, the shortage of steel and the improved quality of concrete led to tall building being built of
11、 reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States; its height—588 feet (179 meters)—is exceeded by the 650-foot (198-meter) Post Office Tower in London and by othe
12、r towers.</p><p> A change in attitude about skyscraper construction has brought a return to the use of the bearing wall. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarin
13、en in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns spaced 10 feet (3 meters) from column center to center. This perimeter wall, in effect, constitutes a bearing wall. One reason for thi
14、s trend is that stiffness against the action of wind can be economically obtained by using t</p><p><b> 3. Skin</b></p><p> The skin of a building consists of both transparent elem
15、ents (windows) and opaque elements (walls). Windows are traditionally glass, although plastics are being used, especially in schools where breakage creates a maintenance problem. The wall elements, which are used to cove
16、r the structure and are supported by it, are built of a variety of materials: brick, precast concrete, stone, opaque glass, plastics, steel, and aluminum. Wood is used mainly in house construction; it is not generally us
17、ed f</p><p><b> 4. Floors</b></p><p> The construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are ei
18、ther slabs of concrete resting on steel beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely s
19、paced concrete beams (ribs) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its underside. The ki</p><p> 5. Mechanical and Electrical Systems</p><p>
20、A modern building not only contains the space for which it is intended (office, classroom, apartment) but also contains ancillary space for mechanical and electrical systems that help to provide a comfortable environment
21、. These ancillary spaces in a skyscraper office building may constitute 25% of the total building area. The importance of heating, ventilating, electrical, and plumbing systems in an office building is shown by the fact
22、that 40% of the construction budget is allocated to them. Be</p><p> There have been attempts to incorporate the mechanical and electrical systems into the architecture of building by frankly expressing the
23、m; for example, the American Republic Insurance Company Building(1965) in Des Moines, Iowa, exposes both the ducts and the floor structure in an organized and elegant pattern and dispenses with the suspended ceiling. Thi
24、s type of approach makes it possible to reduce the cost of the building and permits innovations, such as in the span of the structure.</p><p> 6. Soils and Foundations</p><p> All building are
25、 supported on the ground, and therefore the nature of the soil becomes an extremely important consideration in the design of any building. The design of a foundation depends</p><p> on many soil factors, su
26、ch as type of soil, soil stratification, thickness of soil lavers and their compaction, and groundwater conditions. Soils rarely have a single composition; they generally are mixtures in layers of varying thickness. For
27、evaluation, soils are graded according to particle size, which increases from silt to clay to sand to gravel to rock. In general, the larger particle soils will support heavier loads than the smaller ones. The hardest ro
28、ck can support loads up to 100 tons </p><p> Due to both the compaction and flow effects, buildings tend settle. Uneven settlements, exemplified by the leaning towers in Pisa and Bologna, can have damaging
29、effects—the building may lean, walls and partitions may crack, windows and doors may become inoperative, and, in the extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions,
30、such as those in Mexico City, can have serious consequences. Over the past 100 years, a change in the groundwater level</p><p> The great variability of soils has led to a variety of solutions to the founda
31、tion problem. Where</p><p> firm soil exists close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread footing). Where the soil is softer, it is necessary to spread
32、the column load over a greater area;in this case, a continuous slab of concrete(raft or mat) under the whole building is used. In cases where the soil near the surface is unable to support the weight of the building, pil
33、es of wood, steel, or concrete are driven down to firm soil.</p><p> The construction of a building proceeds naturally from the foundation up to the superstructure. The design process, however, proceeds fro
34、m the roof down to the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 20th
35、 century. Karl Terzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundation</p><p> The early development of high-rise buildings began wit
36、h structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise bui
37、ldings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.</p><p> Greater height entails increased column
38、 and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause</p><p> serious recurring damage to partitions, ceilings,
39、 and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel,
40、 take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.</p><p><b> 中文譯文</b></p><p> 建筑及
41、高層建筑的組成</p><p><b> 安得烈</b></p><p><b> 1 摘要</b></p><p> 材料和結(jié)構(gòu)類型是構(gòu)成建筑物各方面的組成部分,這些部分包括承重結(jié)構(gòu)、圍護結(jié)構(gòu)、樓地面和隔墻。建筑物內(nèi)部還有機械和電氣系統(tǒng),例如電梯、供暖和制冷系統(tǒng)、照明系統(tǒng)等。建筑中高于地面的部分稱為上部結(jié)構(gòu),而地面
42、以下的部分稱為地下結(jié)構(gòu)和基礎(chǔ)。</p><p> 摩天大樓的出現(xiàn)應(yīng)歸功于19世紀的兩個新發(fā)明:鋼結(jié)構(gòu)建筑和載人電梯。鋼材作為結(jié)構(gòu)材料的應(yīng)用起源于1855年貝色麥煉鋼法。古斯塔?艾菲爾(1832~1923)在首次介紹鋼結(jié)構(gòu)建筑是在法國。他在1889年的巴黎國際博覽會所設(shè)計的艾菲爾鐵塔,完美的展現(xiàn)了鋼結(jié)構(gòu)的輕巧。艾菲爾鐵塔高300米,是當時人類建造的最高建筑物,而且直到40年后才被美國的摩天大樓超越。</p&
43、gt;<p> 第一部電梯是1857年Elisha Otis給紐約的一家百貨公司所安裝的。1889年,艾菲爾在艾菲爾鐵塔上安裝了第一部大型液壓電梯,它每小時可以運送2350位乘客到達塔頂。</p><p><b> 2 承重框架</b></p><p> 直到19世紀后期,建筑物的外墻還仍被用做承重墻來支撐樓層,這種結(jié)構(gòu)是基本的一種過梁類型,而且它
44、也被用在框架結(jié)構(gòu)房屋中。因為所需墻體的厚度很大,承重墻結(jié)構(gòu)限制了建筑物的高度;例如,1880年建于芝加哥的16層高的Monadnock Building,在較低的樓層墻體厚度已達到1.5米。1883年,Willian Le Baron Jenney(1832~1907)用類似鳥籠形狀的鐵柱來支撐樓層。1889年,框架結(jié)構(gòu)首次由鋼梁和鋼柱構(gòu)成。外墻成為了而不只是被用做支撐結(jié)構(gòu)是框架結(jié)構(gòu)的一個成果。自從鋼骨架首次推出,建筑物的高度也一直在
45、迅速增加。</p><p> 第二次世界大戰(zhàn)前,所有的高層建筑都是由鋼骨架建造的。戰(zhàn)爭結(jié)束后,鋼材的缺乏和混凝土質(zhì)量的改進,促進了鋼筋混凝土高層建筑的發(fā)展。芝加哥的Marina Towers(1962)是當時美國最高的混凝土建筑;它的高度是588英尺即179米,但是很快它就被高650英尺即195米的倫敦郵政塔和其它一些塔所超過。</p><p> 人們關(guān)于摩天大樓態(tài)度的轉(zhuǎn)變使承重墻重新
46、得到了應(yīng)用。在紐約,由Eero Saarinen于1962年設(shè)計的哥倫比亞廣播公司大樓,四周的墻由1.5米寬的混凝土柱構(gòu)成,柱與柱的中心間距為3米。這種圍護墻有效地構(gòu)成了建筑物的承重墻。這種趨勢發(fā)展的原因之一是建筑物的墻像一個管道一樣可以有利地抵抗風的強烈作用;世貿(mào)大樓就是另一個應(yīng)用管道法的例子。相比之下,堅固的框架或垂直支撐則通常會使建筑的橫向更穩(wěn)定。</p><p><b> 3 圍護結(jié)構(gòu)<
47、;/b></p><p> 一個建筑的圍護結(jié)構(gòu)由透明的窗戶和不透明的墻組成。窗戶通常采用傳統(tǒng)上的玻璃作為材料,然而塑料也被使用,特別在破損嚴重和難以保持的學校里。墻被用來覆蓋結(jié)構(gòu)和起支撐作用,它是由多樣化的建筑材料組成:磚、現(xiàn)澆混凝土、石頭、不透明玻璃、塑料、鋼材和鋁材。木頭是過去建造房屋的主要材料;但因為易燃,一般不常用于用于商業(yè)、工業(yè)和公共建筑。</p><p><b&g
48、t; 4 樓地面</b></p><p> 一幢建筑的樓地面結(jié)構(gòu)取決于它所使用的基本結(jié)構(gòu)框架。在鋼框架建筑中,樓地面或者是鋼梁上的混凝土樓板,或者是由波紋鋼配有混凝土骨料組成的地板。在混凝土結(jié)構(gòu)中,樓地面或者是混凝土梁上的混凝土樓板或者是一系列緊密分布于混凝土梁在方向上端的薄混凝土樓板,在它的下面抹一層抹面。這種樓地面的應(yīng)用取決于支撐柱之間的距離或者墻和空間的功能性。在一棟公寓大樓中,例如,當墻
49、和柱隔開3.7米到5.5米時,最常見的結(jié)構(gòu)是無梁實心混凝土樓蓋。樓蓋的下表面是樓蓋以下空間的最高限度。而波紋鋼地板則常用于辦公大樓中,這是因為當波紋鋼地板的波紋被另一塊金屬板蓋上時,可以形成電話線和電線管道。</p><p> 5 機械與電力系統(tǒng)</p><p> 一個現(xiàn)代建筑不僅要有必要使用空間而且也要包括機械、電力系統(tǒng)等輔助空間,以便提供一個舒適的生活環(huán)境。這些輔助空間可能占摩天
50、大樓總建筑面積的25%。在一個辦公大樓中,供暖、通風、電力和衛(wèi)生設(shè)備系統(tǒng)的預(yù)算額占實際建筑總預(yù)算額的40%,這足以顯示它們在建筑中的重要性。因為現(xiàn)在許多建筑被建造成密封的,窗戶不能被打開,因此便要由機械系統(tǒng)提供通風設(shè)備和空氣調(diào)節(jié)設(shè)備。管道將新鮮空氣從通過中央換氣室和空氣調(diào)節(jié)器源源不斷的輸入建筑物內(nèi)。懸掛在上面樓層結(jié)構(gòu)下面的天花板可以把通風管和控制器的設(shè)備遮擋住以保持美觀。提供動力的電力線路和電話通訊線路也可能被安置在天花板或者樓地面結(jié)構(gòu)
51、層中的管道或?qū)Ь€管里。</p><p> 我們曾試著把機械建造、電力系統(tǒng)加入建筑物的建筑風格中去,讓他們裸露在結(jié)構(gòu)的外部;例如建造與1956年位于Des Morines的美國保險公司大樓,管道和樓地面的結(jié)構(gòu)就被有序、優(yōu)美的懸掛在天花板上。這種建造方法極大降低了建造成本,同時帶來了新的結(jié)構(gòu)形式。例如在結(jié)構(gòu)間距方面的革新。</p><p><b> 6 土和地基</b&g
52、t;</p><p> 所有的建筑物都是靠土層支撐在地面上的,因而土的特性成為建筑設(shè)計時極其重要的考慮因素。基礎(chǔ)的設(shè)計很大程度上仍要考慮土的許多因素,例如土的類型,土分層的情況,土層的厚度和它的密實度,以及地下水的情況等。土層很少只含有單一的物質(zhì);他們通常是厚度不同的混合狀態(tài)土層。據(jù)評定,土層的等級是根據(jù)土分子的大小來劃分,從小到大依次是淤泥、粘土、沙、石子、巖石。通常,較大分子的土支撐的荷載要大于那些小分子的
53、荷載力。最堅硬的巖石能夠支撐的荷載大約是每平方米100噸,而最軟的淤泥僅能夠支撐的荷載大約是每平方米0.25噸。所有地表以下的土都處于受壓狀態(tài),說得更精確些,這些土承受與作用在其上的土柱重量相等的壓力。許多土顯示出彈性的性質(zhì)——他們或被重載壓壞或卸載后又恢復(fù)。土的彈性常隨時間而改變,也就是說,土層的變形在恒載作用下隨著時間的增長而不斷地改變。過一段時間后,如果加于土層上的荷載大于土自然壓緊狀態(tài)下的重量,則建筑物不會產(chǎn)生沉降,反之則會沉降
54、。建筑物的重量可能會使土產(chǎn)生流動;也就是說,經(jīng)常會發(fā)生土被擠出的現(xiàn)象。</p><p> 土受壓和流動的雙重影響,使建筑物發(fā)生沉降。不均勻沉降例如比薩斜塔,損壞的結(jié)果是建筑物發(fā)生傾斜,墻和隔墻可能出現(xiàn)裂縫,窗戶和門可能產(chǎn)生變形,或者甚至建筑可能倒塌。均勻沉降不會如此嚴重,盡管可能出現(xiàn)危險狀況,例如墨西哥城的一些建筑,出現(xiàn)各種各樣的后果,在過去的一百年里,由于地下水位發(fā)生了改變,導(dǎo)致一些建筑下沉了3米多。因為類似
55、的狀況可能發(fā)生在建造時也可能是建造后,因此小心處理建筑物下的土層是極其重要的。</p><p> 土層巨大的變化使得解決地基問題的辦法也變得多樣化。如果表面土層下的土為堅硬土層,最簡單的辦法是采用混凝土基礎(chǔ)。若是軟弱土層,則加大柱的面積;這種情況下,整個建筑就可采用筏板基礎(chǔ)。假設(shè)表面土層不能夠支撐建筑物的重量,木結(jié)構(gòu)建筑、鋼結(jié)構(gòu)建筑、或者混凝土建筑應(yīng)建造在堅硬土層上。</p><p>
56、 建造一幢建筑物一般是從基礎(chǔ)開始到上部結(jié)構(gòu)。然而設(shè)計的過程是從屋頂開始到基礎(chǔ)。在過去,地基處理不是一個系統(tǒng)的研究項目。在20世紀,一種科學的地基設(shè)計方法已經(jīng)發(fā)展起來了。美國的Karl Teraghi不斷創(chuàng)造研究,使土力學和土地勘測聯(lián)合起來,讓它盡可能準確地預(yù)測地基的活動狀態(tài)。過去典型的地基破壞的例子——比薩斜塔現(xiàn)在變得幾乎不存在了。而地基仍然是建筑物中不可見部分費用最大的一部分。</p><p> 早期的高層建
57、筑的發(fā)展是以型鋼結(jié)構(gòu)開始的。鋼筋混凝土和薄殼筒體體系已經(jīng)以節(jié)儉和竟爭為目的被應(yīng)用于住宅和商業(yè)建筑中。作為新結(jié)構(gòu)體系的創(chuàng)新和發(fā)展的結(jié)果,美國到處都是50到110層的高層建筑。</p><p> 巨大的高度需要增加柱和梁的尺寸來使建筑物更加堅固,為的是在風荷載作用下不致于使其傾斜度超過限值。反復(fù)地側(cè)向擺動可能引起隔墻天花板和其它建筑部件的損壞。另外,過度的擺動可能會給建筑物中的居住者帶來不安和恐懼,因為會使他們有移
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土木建筑畢業(yè)設(shè)計中英文翻譯--高層辦公建筑藝術(shù)思考
- 建筑土木畢業(yè)設(shè)計中英文翻譯--新型高層建筑物結(jié)構(gòu)交錯排列剪力墻結(jié)構(gòu)
- 土木專業(yè)畢業(yè)設(shè)計外文翻譯---高層建筑
- 土木工程類畢業(yè)設(shè)計中英文翻譯---建筑工程招投標
- 高層建筑組成外文翻譯
- 畢業(yè)設(shè)計--高層建筑
- 土木工程畢業(yè)設(shè)計外文翻譯-高層建筑結(jié)構(gòu)
- 高層建筑與別墅建筑畢業(yè)設(shè)計論文
- 高層建筑與別墅建筑畢業(yè)設(shè)計論文
- 畢業(yè)設(shè)計中英文翻譯.doc
- 畢業(yè)設(shè)計中英文翻譯.doc
- 畢業(yè)設(shè)計中英文翻譯.doc
- 畢業(yè)設(shè)計中英文翻譯.doc
- 畢業(yè)設(shè)計中英文翻譯.doc
- [雙語翻譯]高層建筑外文翻譯(英文)
- 高層建筑畢業(yè)設(shè)計文獻綜述
- 畢業(yè)設(shè)計plc中英文翻譯
- 畢業(yè)設(shè)計中英文翻譯.doc
- 畢業(yè)設(shè)計中英文翻譯.doc
- 畢業(yè)設(shè)計中英文翻譯.doc
評論
0/150
提交評論