本科畢業(yè)設(shè)計(jì)(論文)翻譯--高層結(jié)構(gòu)與鋼結(jié)構(gòu)_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  高層結(jié)構(gòu)與鋼結(jié)構(gòu)</b></p><p>  近年來,盡管一般的建筑結(jié)構(gòu)設(shè)計(jì)取得了很大的進(jìn)步,但是取得顯著成績(jī)的還要屬超高層建筑結(jié)構(gòu)設(shè)計(jì)。</p><p>  最初的高層建筑設(shè)計(jì)是從鋼結(jié)構(gòu)的設(shè)計(jì)開始的。鋼筋混凝土和受力外包鋼筒系統(tǒng)運(yùn)用起來是比較經(jīng)濟(jì)的系統(tǒng),被有效地運(yùn)用于大批的民用建筑和商業(yè)建筑中。50層到100層的建筑被定義為超高層建筑。

2、而這種建筑在美國(guó)得廣泛的應(yīng)用是由于新的結(jié)構(gòu)系統(tǒng)的發(fā)展和創(chuàng)新。</p><p>  這樣的高度需要增大柱和梁的尺寸,這樣以來可以使建筑物更加堅(jiān)固以至于在允許的限度范圍內(nèi)承受風(fēng)荷載而不產(chǎn)生彎曲和傾斜。過分的傾斜會(huì)導(dǎo)致建筑的隔離構(gòu)件、頂棚以及其他建筑細(xì)部產(chǎn)生循環(huán)破壞。除此之外,過大的搖動(dòng)也會(huì)使建筑的使用者們因感覺到這樣的的晃動(dòng)而產(chǎn)生不舒服的感覺。無論是鋼筋混凝土結(jié)構(gòu)系統(tǒng)還是鋼結(jié)構(gòu)系統(tǒng)都充分利用了整個(gè)建筑的剛度潛力,因此

3、不能指望利用多余的剛度來限制側(cè)向位移。</p><p>  在鋼結(jié)構(gòu)系統(tǒng)設(shè)計(jì)中,經(jīng)濟(jì)預(yù)算是根據(jù)每平方英寸地板面積上的鋼材的數(shù)量確定的。圖示1中的曲線A顯示了常規(guī)框架的平均單位的重量隨著樓層數(shù)的增加而增加的情況。而曲線B顯示則顯示的是在框架被保護(hù)而不受任何側(cè)向荷載的情況下的鋼材的平均重量。上界和下界之間的區(qū)域顯示的是傳統(tǒng)梁柱框架的造價(jià)隨高度而變化的情況。而結(jié)構(gòu)工程師改進(jìn)結(jié)構(gòu)系統(tǒng)的目的就是減少這部分造價(jià)。</p

4、><p>  鋼結(jié)構(gòu)中的體系:鋼結(jié)構(gòu)的高層建筑的發(fā)展是幾種結(jié)構(gòu)體系創(chuàng)新的結(jié)果。這些創(chuàng)新的結(jié)構(gòu)已經(jīng)被廣泛地應(yīng)用于辦公大樓和公寓建筑中。</p><p>  剛性帶式桁架的框架結(jié)構(gòu):為了聯(lián)系框架結(jié)構(gòu)的外柱和內(nèi)部帶式桁架,可以在建筑物的中間和頂部設(shè)置剛性帶式桁架。1974年在米望基建造的威斯康森銀行大樓就是一個(gè)很好的例子。</p><p>  框架筒結(jié)構(gòu): 如果所有的構(gòu)件都用

5、某種方式互相聯(lián)系在一起,整個(gè)建筑就像是從地面發(fā)射出的一個(gè)空心筒體或是一個(gè)剛性盒子一樣。這個(gè)時(shí)候此高層建筑的整個(gè)結(jié)構(gòu)抵抗風(fēng)荷載的所有強(qiáng)度和剛度將達(dá)到最大的效率。這種特殊的結(jié)構(gòu)體系首次被芝加哥的43層鋼筋混凝土的德威特紅棕色的公寓大樓所采用。但是這種結(jié)構(gòu)體系的的所有應(yīng)用中最引人注目的還要屬在紐約建造的100層的雙筒結(jié)構(gòu)的世界貿(mào)易中心大廈。</p><p>  斜撐桁架筒體: 建筑物的外柱可以彼此獨(dú)立的間隔布置,也可以

6、借助于通過梁柱中心線的交叉的斜撐構(gòu)件聯(lián)系在一起,形成一個(gè)共同工作的筒體結(jié)構(gòu)。這種高度的結(jié)構(gòu)體系首次被芝加哥的John Hancock 中心大廈采用。這項(xiàng)工程所耗用的剛才量與傳統(tǒng)的四十層高樓的用鋼量相當(dāng)。</p><p>  筒體: 隨著對(duì)更高層建筑的要求不斷地增大。筒體結(jié)構(gòu)和斜撐桁架筒體被設(shè)計(jì)成捆束狀以形成更大的筒體來保持建筑物的高效能。芝加哥的110層的Sears Roebuck 總部大樓有9個(gè)筒體,從基礎(chǔ)開始

7、分成三個(gè)部分。這些獨(dú)立筒體中的終端處在不同高度的建筑體中,這充分體現(xiàn)出了這種新式結(jié)構(gòu)觀念的建筑風(fēng)格自由化的潛能。這座建筑物1450英尺(442米)高,是世界上最高的大廈。</p><p>  薄殼筒體系統(tǒng):這種筒體結(jié)構(gòu)系統(tǒng)的設(shè)計(jì)是為了增強(qiáng)超高層建筑抵抗側(cè)力的能力(風(fēng)荷載和地震荷載)以及建筑的抗側(cè)移能力。薄殼筒體是筒體系統(tǒng)的又一大飛躍。薄殼筒體的進(jìn)步是利用高層建筑的正面(墻體和板)作為與筒體共同作用的結(jié)構(gòu)構(gòu)件,為高

8、層建筑抵抗側(cè)向荷載提供了一個(gè)有效的途徑,而且可獲得不用設(shè)柱,成本較低,使用面積與建筑面積之比又大的室內(nèi)空間。</p><p>  由于薄殼立面的貢獻(xiàn),整個(gè)框架筒的構(gòu)件無需過大的質(zhì)量。這樣以來使得結(jié)構(gòu)既輕巧又經(jīng)濟(jì)。所有的典型柱和窗下墻托梁都是軋制型材,最大程度上減小了組合構(gòu)件的使用和耗費(fèi)。托梁周圍的厚度也可適當(dāng)?shù)臏p小。而可能占據(jù)寶貴空間的墻上鐓梁的尺寸也可以最大程度地得到控制。這種結(jié)構(gòu)體系已被建造在匹茲堡洲的One

9、 Mellon銀行中心所運(yùn)用。</p><p>  鋼筋混凝土中的各體系:雖然鋼結(jié)構(gòu)的高層建筑起步比較早,但是鋼筋混凝土的高層建筑的發(fā)展非???,無論在辦公大樓還是公寓住宅方面都成為剛結(jié)構(gòu)體系的有力競(jìng)爭(zhēng)對(duì)手。</p><p>  框架筒:像上面所提到的,框架筒構(gòu)思首次被43層的迪威斯公寓大樓所采用。在這座大樓中,外柱的柱距為5.5英尺(1.68米)。而內(nèi)柱則需要支撐8英寸厚的無梁板。<

10、/p><p>  筒中筒結(jié)構(gòu):另一種針對(duì)于辦公大樓的鋼筋混凝土體系把傳統(tǒng)的剪力墻結(jié)構(gòu)與外框架筒相結(jié)合。該體系由柱距很小的外框架與圍繞中心設(shè)備區(qū)的剛性剪力墻筒組成。這種筒中筒結(jié)構(gòu)(如插圖2)使得當(dāng)前世界上最高的輕質(zhì)混凝土大樓(在休斯頓建造的獨(dú)殼購(gòu)物中心大廈)的整體造價(jià)只與35層的傳統(tǒng)剪力墻結(jié)構(gòu)相當(dāng)。</p><p>  鋼結(jié)構(gòu)與混凝土結(jié)構(gòu)的聯(lián)合體系也有所發(fā)展。Skidmore ,Owings 和

11、Merrill共同設(shè)計(jì)的混合體系就是一個(gè)好例子。在此體系中,外部的混凝土框架筒包圍著內(nèi)部的鋼框架,從而結(jié)合了鋼筋混凝土體系與鋼結(jié)構(gòu)體系各自的優(yōu)點(diǎn)。在新奧爾良建造的52層的獨(dú)殼廣場(chǎng)大廈就是運(yùn)用了這種體系。</p><p>  鋼結(jié)構(gòu)是指在建筑物結(jié)構(gòu)中鋼材起著主導(dǎo)作用的結(jié)構(gòu),是一個(gè)很寬泛的概念。大部分的鋼結(jié)構(gòu)都包括建筑設(shè)計(jì),工程技術(shù)、工藝。通常還包括以主梁、次梁、桿件,板等形式存在的鋼的熱軋加工工藝。上個(gè)世紀(jì)七十年代

12、,除了對(duì)其他材料的需求在增長(zhǎng),鋼結(jié)構(gòu)仍然保持著對(duì)于來自美國(guó)、英國(guó)、日本、西德、法國(guó)等國(guó)家的鋼材廠鋼材的大量需求。</p><p>  發(fā)展歷史:早在Bessemer和Siemens-Marton(開放式爐)工藝出現(xiàn)以前,鋼結(jié)構(gòu)就已經(jīng)有幾十年的歷史了。而直到此工藝問世之后才使得鋼材可以大批生產(chǎn)出來供結(jié)構(gòu)所用。對(duì)鋼結(jié)構(gòu)諸多問題的研究開始于鐵結(jié)構(gòu)的使用,當(dāng)時(shí)很著名的研究對(duì)象是1977年在英國(guó)建造的橫跨斯沃河的Coalb

13、rook dale 大橋。這座大橋以及后來的鐵橋設(shè)計(jì)再加上蒸汽鍋爐、鐵船身的設(shè)計(jì)都刺激了建筑安裝設(shè)計(jì)以及連接工藝的發(fā)展。鐵結(jié)構(gòu)對(duì)材料的需求量較小是優(yōu)勝于磚石結(jié)構(gòu)的主要方面。長(zhǎng)久以來一直用木材制作的三角桁架也換成鐵制的了。承受由直接荷載產(chǎn)生的重力作用的受壓構(gòu)件常用鑄鐵制造,而承受由懸掛荷載產(chǎn)生的推力作用的受拉構(gòu)件常用熟鐵制造。</p><p>  把鐵加熱到塑性狀態(tài),使之從卷狀轉(zhuǎn)化為扁平狀與圓狀之間的某一狀態(tài)的工藝

14、,早在1800年就得以發(fā)展了。隨后,1819年角鋼問世,1894年第一個(gè)工字鋼被建造出來作為巴黎火車站的頂梁。此工字鋼長(zhǎng)17.7英尺)(5.4米)。</p><p>  1851年英國(guó)的Joseph Paxtond為倫敦博覽會(huì)建造了水晶宮。據(jù)說當(dāng)時(shí)他已有這樣的骨架結(jié)構(gòu)構(gòu)思:用比較細(xì)的鐵梁作為玻璃幕墻的骨架。此建筑的風(fēng)荷載抵抗力是由對(duì)角拉桿所提供的。在金屬結(jié)構(gòu)的發(fā)展歷史中,有兩個(gè)標(biāo)志性事件:首先是從木橋發(fā)展而來的格

15、構(gòu)梁由木制轉(zhuǎn)化為鐵制;其次是鍛鐵制的受拉構(gòu)件與鑄鐵制的受壓構(gòu)件受熱后通過鉚釘連接工藝的發(fā)展。</p><p>  十九世紀(jì)五六十年代,Bessemer 與 Siemens-Martin工藝的發(fā)展使鋼材的生產(chǎn)能滿足結(jié)構(gòu)的需求。鋼的受拉強(qiáng)度與受壓強(qiáng)度都好于鐵。這種新型的金屬常被有想象力的工程師所利用,尤其倍受那些參與過英國(guó)、歐洲以及美國(guó)的道橋建設(shè)的工程師的喜愛。</p><p>  其中一個(gè)很

16、好的例子就是Eads大橋(也被稱為路易斯洲大橋)(1867-1874)。在這座大橋中,每隔500英尺(152.5米)設(shè)有由鋼管加強(qiáng)肋形成的拱。英國(guó)的Firth of Forth懸索橋設(shè)有管件支撐,直徑大約為12英尺(3.66米),長(zhǎng)度為350英尺(107)米。這些大橋以及其他結(jié)構(gòu)在引導(dǎo)鋼結(jié)構(gòu)的發(fā)展,規(guī)范的實(shí)施,許用應(yīng)力的設(shè)計(jì)方面起到了很重要的作用。1907年Quebec懸索大橋的偶然破壞揭露了二十世紀(jì)初期由于缺乏足夠的理論知識(shí),甚至是缺

17、乏足夠的理論研究的基礎(chǔ)知識(shí),而導(dǎo)致在應(yīng)力分析方面出現(xiàn)了很多的不足。但是,這樣的損壞卻很少出現(xiàn)在金屬骨架的辦公大樓中。因?yàn)楸M管在缺乏縝密的分析的情況下,這些建筑也表現(xiàn)出了很高的實(shí)用性。在上個(gè)世紀(jì)中葉,沒有經(jīng)過任何特殊合金強(qiáng)化、硬化過的普通碳素鋼已經(jīng)被廣泛地使用了。</p><p>  在1889年巴黎召開的世界博覽會(huì)上,金屬結(jié)構(gòu)表現(xiàn)出了在超高層建筑運(yùn)用上的內(nèi)在潛力。在這次會(huì)上,法國(guó)著名的橋梁設(shè)計(jì)師埃非爾展示了他的杰

18、作-300米高的露天開挖的鐵塔。無論是它的高度(比著名的金字塔的兩倍還高),架設(shè)的速度-人數(shù)不多的工作人員僅用幾個(gè)月的時(shí)間就完成了整個(gè)工程任務(wù),還是很低的工程造價(jià)都使它脫穎而出。</p><p>  首批摩天大廈:在剛結(jié)構(gòu)發(fā)展的同時(shí),美國(guó)的另一個(gè)是也蓬勃的發(fā)展起來了。1884-1885年,芝加哥的工程師Maj.William Le Baron Jennny設(shè)計(jì)了家庭保險(xiǎn)公司大廈。這座大廈也是金屬結(jié)構(gòu)的,有十層高。

19、大廈的梁是鋼制的,而柱是鑄鐵所制。鑄鐵制的過梁支撐著窗洞口上方的砌體,同時(shí)也需要鑄鐵制的柱支撐著。實(shí)心砌體的天井與界墻提供抵抗風(fēng)載的側(cè)向支撐。不到十年的功夫,芝加哥和紐約已經(jīng)有超過30座辦公大樓是利用這種結(jié)構(gòu)。鋼材在這些結(jié)構(gòu)中起了非常大的作用。這種結(jié)構(gòu)利用鉚釘把梁與柱連接在一起。有時(shí)為了抵抗風(fēng)荷載還是在豎向構(gòu)件和橫向構(gòu)件的連接點(diǎn)出貼覆上節(jié)點(diǎn)板來加固結(jié)構(gòu)。此外,輕型的玻璃幕墻結(jié)構(gòu)代替了老式的重質(zhì)砌體結(jié)構(gòu)。</p><p

20、>  盡管幾十年來之中建筑形式主要是在美國(guó)發(fā)展的,但是它卻影響著全世界鋼材工業(yè)的發(fā)展。十九世紀(jì)的最后幾年,基本結(jié)構(gòu)形狀工字型鋼的厚度已經(jīng)達(dá)到20英寸(0.508米),非對(duì)稱的Z字型鋼和T型鋼可以與有一定寬度和厚度的板相聯(lián)結(jié),使得構(gòu)件具體符合要求的尺寸和強(qiáng)度。1885年最重的型鋼通過熱軋生產(chǎn)出來,每英寸不到100磅(45千克)。到二十世紀(jì)六十年代這個(gè)數(shù)字已經(jīng)達(dá)到每英寸700磅(320千克)。</p><p>

21、  緊隨著鋼結(jié)構(gòu)的發(fā)展,1988年第一部電梯問世了。安全載客電梯誕生,以及安全經(jīng)濟(jì)的鋼結(jié)構(gòu)設(shè)計(jì)方法的發(fā)展促使建筑高度迅猛增加。1902年在紐約建造的高286英寸(87.2米)的Flatiron大廈不斷地被后來的建筑所超越。這些建筑分別是高375英尺(115米)的時(shí)代大廈(1904),(后來改名為聯(lián)合化工制品大廈)。1908年在華爾街建造的高468英尺(143米)的城市投資公司大廈,高612 英尺(187米)的星爾大廈,以及700英尺(2

22、14米)的都市塔和780英尺高(232米)的Woll worth大廈。</p><p>  房屋高度與高寬比的不斷增加也帶來了許多的問題。為了控制道路的阻塞,要對(duì)建筑的縮進(jìn)設(shè)計(jì)進(jìn)行限定。側(cè)向支撐的設(shè)置也是其中一項(xiàng)技術(shù)問題,例如,埃非爾鐵塔所采用的對(duì)角支撐體系對(duì)于要靠太陽光來照明的辦公大廈就不實(shí)用了。而只有考慮到具體的單獨(dú)梁與單獨(dú)柱的抗彎能力以及梁柱相交處的剛度的框架設(shè)計(jì)才是可靠的。隨著現(xiàn)代內(nèi)部采光體系的不斷發(fā)展,

23、抵抗風(fēng)荷載的對(duì)角支撐又重新被利用起來了。芝加哥的John Hancock 中心就是一個(gè)很顯著的例子。外部的對(duì)角支撐成為此結(jié)構(gòu)立面的一個(gè)很顯眼的部分。</p><p>  第一次世界大戰(zhàn)暫時(shí)中斷了所謂摩天大廈(當(dāng)時(shí)這個(gè)詞并沒有確定)的蓬勃發(fā)展,但是二十世紀(jì)二十年代又恢復(fù)了這一趨勢(shì)。1931年建造的帝國(guó)大廈把詞潮流推向了頂峰。102層高1250英尺(381米)的帝國(guó)大廈在后來的40年一直保持著世界最高的地位。它的建造

24、速度充分證明了這種新的結(jié)構(gòu)形式已經(jīng)被當(dāng)時(shí)的技術(shù)所掌握。次項(xiàng)工程所需要的梁是由Bayonne海灣對(duì)岸的軍械庫所提供的。是由用精密儀器控制的駁船和卡車負(fù)責(zé)運(yùn)輸?shù)?。由九架起重機(jī)將這些梁提升到指定的位置。由工業(yè)軌道裝置把鋼材和其他材料移到每一層上去。先是螺栓連接緊接著鉚釘連接,最后是裝修,整個(gè)工程的最終完成只用了一年零45天。</p><p>  二十世紀(jì)三十年代席卷全世界的大蕭條以及第而次世界大戰(zhàn)使鋼結(jié)構(gòu)的發(fā)展又一次受

25、到了阻礙。但是與此同時(shí),焊接代替了鉚釘連接則是一個(gè)很重要的發(fā)展。</p><p>  十九世紀(jì)末,利用焊接把各個(gè)鋼零件相連接已取得了很好的成績(jī),并在第一次世界大戰(zhàn)中被運(yùn)用于救生船的修理。但直到第二次世界大戰(zhàn)后才用于建筑結(jié)構(gòu)中。同時(shí)在連接領(lǐng)域中又一進(jìn)步就是高強(qiáng)螺栓代替了鉚釘。</p><p>  二戰(zhàn)結(jié)束后,歐洲,美國(guó),日本等國(guó)都擴(kuò)大了對(duì)在不定應(yīng)力(包括超過屈服點(diǎn)的情況)作用下各種結(jié)構(gòu)鋼的性

26、質(zhì)的研究,并進(jìn)行了更為精確、系統(tǒng)的分析。此后,許多國(guó)家采用了一些更為自由靈活的設(shè)計(jì)規(guī)范和更為理想化的彈性設(shè)計(jì)規(guī)范。計(jì)算機(jī)在工程上的運(yùn)用代替了冗長(zhǎng)的手工計(jì)算,從而更加促進(jìn)了鋼結(jié)構(gòu)的發(fā)展,并大大的減低了造價(jià)。</p><p>  Talling building and Steel construction</p><p>  Although there have been many adv

27、ancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings.</p><p>  The early development of high-rise buil

28、dings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The

29、high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.</p><p>  Greater height entails incr

30、eased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other ar

31、chitectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage

32、 of inherent potential stiffness </p><p>  In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A i

33、n Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the up

34、per boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame.Stru</p><p>  Systems in steel. Tall buildings in steel developed as a result of several types

35、 of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.</p><p>  Frame with rigid belt trusses. In order to tie the exterior columns of a fr

36、ame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwauke

37、e.</p><p>  Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to e

38、ach other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concr

39、ete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this s</p><p>  Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be ma

40、de to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock C

41、entre in Chicago, using as much steel as is normally needed for a traditional 40-story building.</p><p>  Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column

42、-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the

43、 building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest stru</p><p>  Stressed-skin tube

44、 system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube t

45、akes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resistin

46、g lateral loads in high-rise buildings, and re</p><p>  Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and less expensiv

47、e. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for u

48、pset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One </p><p>  Systems in concrete. While tall buildings constructed of steel

49、 had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.</p>

50、;<p>  Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m

51、) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.</p><p>  Tube in tube. Another system in reinforced concrete for office buildings combines t

52、he traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. Th

53、e system (Fig .2), known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in </p><p>  

54、Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelop

55、s an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.</p><p> 

56、 Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in th

57、e form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.

58、S, U.K, U.S.S.R, Japan, West German, France, and other steel </p><p>  Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Si

59、emens-Martin (openj-hearth) processes made it possible to produce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which

60、began with the Coalbrookdale Bridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addit</p><p>  The technique for passing iron, heated to the plastic

61、 state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, 17.7 feet (5.4m) long , were fabricated as roof girders for a Paris rail

62、road station.</p><p>  Two years later Joseph Paxton of England built the Crystal Palace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender

63、 iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palace was provided by diagonal iron rods. Two feature are particularly important in the history of metal

64、 construction; first, the use of latticed girder, which are small trusses, a form first develope</p><p>  In 1853 the first metal floor beams were rolled for the Cooper Union Building in New York. In the lig

65、ht of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails.</p><p>  The development of the Bessemer and Siemens-Martin pr

66、ocesses in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notab

67、ly by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the U.S.</p><p>  A notable example was the Eads Bridge, also known as the St. Louis Bridge,

68、 in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (152.5m). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft (3.6

69、6m) in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcement of standards and codification of permissible design stresses. The lack </p>&l

70、t;p>  The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of 1889.for which Alexandre-Gustave Eiffel, a leading French bridge engineer, erected

71、 an openwork metal tower 300m (984 ft) high. Not only was the height-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so, a small crew completed the work in a f

72、ew months. </p><p>  The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicago engineer , had designed the Home

73、Insurance Building, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on

74、 the cast iron columns. Soild masonry court and party walls provided lateral support against w</p><p>  Though the new construction form was to remain centred almost entirely in America for several decade, i

75、ts impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( 0.508m) in depth and Z and T shapes of lesser proportions were readily available, t

76、o combine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced through hot-r</p><p>  Coincident with the

77、introduction of structural steel came the introduction of the Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent bu

78、ilding heights soaring. In New York the 286-ft (87.2-m) Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City Investing Com

79、pany Building in Wall Street, the 612-ft</p><p>  The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the techn

80、ical side, the problem of lateral support was studied. A diagonal bracing system, such as that used in the Eiffel Tower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was f

81、ound in greater reliance on the bending resistance of certain individual beams and columns strategically designed into the </p><p>  World War I brought an interruption to the boom in what had come to be cal

82、led skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Empire State Building in the 1931. The Empire State’s 102 stories (1,250ft. [381m])

83、 were to keep it established as the hightest building in the world for the next 40 years. Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot acro</p>&l

84、t;p>  The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important

85、advance.</p><p>  Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to c

86、onstruction was limited until after World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections.</p><p>  Since the close of World W

87、ar II, research in Europe, the U.S., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more

88、 refined and systematic analysis. This in turn has led to the adoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論