版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 本科畢業(yè)設(shè)計外文翻譯</p><p> 題目:在冷軋廠工作軸過早發(fā)生故障的分析</p><p> 在冷軋廠工作軸過早發(fā)生故障的分析Hongchun Li, Zhengyi Jiang, Kiet , Tieu , Weihua Sun</p><p> 澳大利亞,新南威爾士州2522,Wollongong,Wollongong大學(xué),機械
2、學(xué)院,材料和機械電子工程</p><p> 濟南鋼鐵有限公司技術(shù)中心,濟南250101,中國收到2006年9月12日,在2007年1月15日收到,2007年1月18日2007年5月23日網(wǎng)上提供</p><p><b> 概述</b></p><p> 在本文中,對幾個冷連軋機工作軸過早失效進行了調(diào)查。為了研究工作軸表面特性和破壞機
3、理,化學(xué)成分,微觀結(jié)構(gòu)和軋軸材料的硬度進行了研究。已計算在工作軸剝落面積的壓力,確定應(yīng)力狀態(tài)。在研究中,軋軸磨損和損壞的原因已經(jīng)查明。對工作軸表面圖像進行了研究,發(fā)現(xiàn)了已損壞的軋軸磨損特性的特點。人們已經(jīng)發(fā)現(xiàn),經(jīng)營的因素和冶金缺陷將影響在冷軋帶鋼軋軸的使用壽命。2007 Elsevier B.V保留所有權(quán)利。關(guān)鍵詞:穿;工作軸冷軋;應(yīng)力分布1.介紹</p><p> 目前,冷軋帶鋼生產(chǎn)上的冷連軋帶鋼
4、軋機或倒車的冷連軋機工作軸破壞為[1]非圓形變形[2]。應(yīng)用于冷連軋,板形好,型材和平整度[3,4]得到控制模型的基礎(chǔ)上。在冷連軋機工作軸發(fā)揮主導(dǎo)作用,使帶鋼的變形來實現(xiàn)所需的形狀,輪廓和尺寸。然而,工作軸在極其惡劣的條件下運作,在經(jīng)營成本的冷連軋機的最重要環(huán)節(jié)之一,是有關(guān)工作軸[5]。工作軸磨損的材料,變形,熱凸度,氧化鐵皮及帶鋼表面粗糙度等的影響,[6-14]已查處,并為混合潤滑摩擦模型[15]。工作軸的磨損,影響熱軋帶鋼質(zhì)量和工作
5、軸使用壽命顯著。在軋鋼工作軸的過程中,受高循環(huán)荷載和水平高的耐磨性。與熱軋相比,冷軋鋼軋制材料的抗變形能力是非常高。在軋軸咬軋軸表面受到高壓力是大于10000 MPa和進一步剪應(yīng)力產(chǎn)生摩擦[16]在軸/帶接口。</p><p> 工作軸過早失效滾動不僅增加成本,而且還軋機停機時間,生產(chǎn)力顯著影響。偽造合金鋼工作軸過早失敗的原因可能是操作技術(shù)和冶金軋軸因素的綜合影響。經(jīng)營的因素,包括軋制負荷,潤滑,軋制速度,運營
6、商的經(jīng)驗,如軋制參數(shù)的選擇。工作軸的質(zhì)量,包括非金屬夾雜物的存在,鑄造缺陷和相變[16]。</p><p> 在本文中,冷連軋機工作軸過早失效。作者對軸的化學(xué)成分,顯微組織和硬度軋軸材料進行了審查使用收集剝落樣品,并進行了拉伸試驗。在剝落面積的應(yīng)力狀態(tài)也已確定找到的軋軸磨損和剝落損壞的原因。工作軸表面圖像進行了研究,并已確定為損壞的軋軸磨損的特點。人們已經(jīng)發(fā)現(xiàn),冶金缺陷和運行參數(shù)的影響在冷軋帶鋼軋軸使用壽命。
7、2.軋制工藝和參數(shù)圖1.A2-的立場的匯接寒冷的帶鋼軋機。 (1)成卷 #2(2)張力計,(3)激光測速儀,(4)測厚儀,(5)支撐#2,(6 )支撐1,(7)卷取機#1(8)開卷機。</p><p> 圖1概述了2支撐的緊湊型冷軋帶鋼軋機的原理。熱軋帶鋼是這四軸冷連軋機的初始原料。熱軋鋼卷厚度約1.5-5.0毫米,寬度和重量35噸,在900-1680毫米。前滾酸洗的熱軋帶鋼氧化鐵皮被刪除。最大的酸洗速
8、度是60米/分鐘和酸浴的溫度大約是70-85攝氏度。酸洗過程中不影響隨后的結(jié)果。在軋制過程中采用的AGC液壓控制,厚度上線控制,自動測量速度。 潤滑劑使用的是quakeroln680-2-BPD。</p><p> 工作軸鍛造鋁合金鋼含有約4%的鉻,HSC硬度為83至85。在工作軸CVC的個人資料。表1和表2顯示的軋制參數(shù)和工作軸。</p><p> 3.結(jié)果與討論3.1 工作軸
9、取樣</p><p> 其競選期間的剝落工作軸的標(biāo)本,他們被切斷,并準備利用掃描電子顯微鏡和光學(xué)顯微鏡觀察。表面缺陷圖像被從四個不同的使用的軋軸,金屬焊接,綁扎,并在他們的競選剝落顯著。所有的工作軸,用于在不同的立場。軋軸表面粗糙度,Ra,測量的工作軸軋機安裝之前和之后。3.2.剝落</p><p> 圖2(a和b)顯示了被剝落工作軸工作軸缺陷的部分和在D-D軸的情況下,似乎是一條
10、曲線,這是在軋軸表面的長度約18毫米的剝落。然而,裂紋有沒有深度,根據(jù)超聲波測試。然而,對軸ð的損害可能是在第一階段的軋軸A.表1</p><p><b> 軋制參數(shù)</b></p><p><b> 表2工作軸參數(shù)</b></p><p> 圖2.工作軸剝落。 (A)軸剝落A和 (B)軸剝落D.
11、 </p><p> 典型的剝落面積大小已剝落面積為1430毫米的長度,周長353毫米和85毫米深度的最大的軋軸A.測量。軋軸過早失效后,4.515公里的連軋服務(wù)就是比軋軸四軸材料的微觀結(jié)構(gòu)工齡進行了檢查,光學(xué)顯微鏡,如圖3所示。由此可以看出,有一個深度為75毫米硬化區(qū)的工作軸,因此所采取的微觀結(jié)構(gòu)的區(qū)域與中心的工作軸A.圖是從軋軸表面的距離。 3(a)是一個區(qū)接近表面,(b)約在深度75毫米從表面上
12、看,和(c)從表面深度約85毫米。可以看出,晶粒尺寸從11.5至20米不等。更重要的是,粗糧底下發(fā)現(xiàn)軋軸表面,這是保證最低硬化深度為85毫米少75毫米。圖3.工作軸材料的微觀結(jié)構(gòu)。 </p><p> ?。╝)地區(qū)靠近面,(b)約75毫米的表面深度(c)表面深度約85毫米。圖4.打擊軸A.</p><p> 斯特朗試驗機上進行拉伸試驗與平板標(biāo)本。對樣品進行了削減從??大剝落件從
13、英斯特朗試驗機軸A.結(jié)果表明,抗拉強度和屈服強度低于制造商的要求。圖4顯示了裂紋工作軸A.正常工作軸的壓力和剪切應(yīng)力,分別由赫茲分析計算。計算的正應(yīng)力和剪應(yīng)力[17]開發(fā)與帶鋼接觸的結(jié)果顯示在圖5和圖6中可以看出。圖5講的一些組件(SXX =σR)和(SZZ =σZ,)達成一項在表面的大值。</p><p> 兩軸A和D是新軸。穿的工作軸或支承軸后面的個人資料可能不實際的因素,促進軋軸損壞。然而,在領(lǐng)先的邊緣
14、或由于折疊帶鋼的冷軋厚度增加一倍局部高負荷可能超過軋軸表面的剪切強度。這是有可能形成一個或多個壓力裂縫,在靠近表面的地方超載領(lǐng)域。裂縫軸軸的方向平行,但在一個非徑向方向傳播(圖2(b))。由于軋機扭轉(zhuǎn)滾動功能,裂縫可能會逐步傳播(圖4)。因內(nèi)部不當(dāng)?shù)奈⒂^結(jié)構(gòu)(圖3(b)),內(nèi)的工作軸表面裂紋擴展開發(fā)。因此,發(fā)生大的表面剝落。這樣可以減少工作軸使用壽命顯著(見圖7,熱軋帶鋼軋軸公里長度很短,工作軸前被損壞)。</p><
15、;p> 圖5.正常講開發(fā)與熱軋帶鋼接觸的結(jié)果圖6.剪應(yīng)力與熱軋帶鋼接觸的結(jié)果圖7.前滾失敗和表面粗糙度的冷軋帶鋼的長度之間的關(guān)系</p><p><b> 3.3.地帶的焊接</b></p><p> 圖8顯示了軋制,軋機的第二站,第三遍后,將工作軸B軋軸表面上的金屬焊接。坐落在熱軋帶鋼的邊緣,損害和它的面積約650毫米,寬度和周長707毫米。不正
16、確的軸形或條狀不佳,可能會導(dǎo)致在具體的軋制壓力,這反過來又導(dǎo)致當(dāng)?shù)馗咻S表面溫度。因此增加縮進形式的軋軸表面的塑性變形,甚至剝落,是造成這些超載嚴重的熱開發(fā)的地方增加了熾裂或瘀傷。</p><p> 取出后由于去除軋軸表面焊接綁扎部分,工作軸可連續(xù)使用。然而,工作軸的磨損是這種情況下,具有重要意義,如圖所示。與其他案件相比,7軸表面粗糙度降低顯著(見軸B)。 B軸的使用壽命無明顯影響,由于其連續(xù)使用。3.4
17、.帶狀</p><p> 重去皮明亮的區(qū)域出現(xiàn)的形式與一個非常粗糙的表面圓周方向上工作軸Ç面向,如圖9所示。刪除層厚度約0.1毫米和0.9毫米之間。它被廣泛接受,帶是典型的表面損傷,高鉻鋼工作軸時,他們使用更長的運行時間后,在相同的關(guān)鍵立場和位置。然而,案件發(fā)生在第一遍后運動時間短滾動軸Ç。</p><p> 帶起源發(fā)生交替交替熱負荷超過疲勞的表面材料的剪切強度時,
18、組合中的摩擦力。據(jù)推測,表面裂縫內(nèi)主要熾裂發(fā)展和傳播剪從軸,直到熾裂地區(qū)的深度。當(dāng)軋軸表面局部惡化,峰值剪切力是誘導(dǎo)和領(lǐng)導(dǎo)到周圍軸筒去皮帶的發(fā)展速度非常快,導(dǎo)致軋軸磨損。</p><p> 圖8.剝離工作軸的焊接圖9.帶工作軸</p><p> 圖9展出的情況軸使用壽命上有重大影響力和軋軸磨損,這表明,軋軸表面粗糙度的降低在短期公里冷軋帶鋼長度顯著(見圖7,軸C)。因此,這一缺陷顯
19、著提高了軋軸磨損。4.結(jié)論</p><p> 本文3種在冷軋廠工作軸表面缺陷進行了調(diào)查。它的結(jié)論是講一些組件達到在表面的大值,這可能會導(dǎo)致工作軸裂紋,降低使用壽命的結(jié)果。在此期間,冶金缺陷,如不當(dāng)編寫的微觀結(jié)構(gòu),提高軋軸表面剝落材料的風(fēng)險。地帶焊接軋機操作不正確造成的。提高工作軸溫度控制和喂養(yǎng)條狀,可避免此類事件。捆扎是第三次在這項研究中遇到的軋軸表面損傷。據(jù)認為,更好的軋軸冷卻與潤滑,可減少損壞的風(fēng)險,并
20、提高工作軸使用壽命。</p><p><b> 致謝</b></p><p> 第一作者想感謝Wollongong大學(xué)大學(xué)研究生獎(UPA)的當(dāng)前工作的支持。筆者也想感謝T. Silver博士的協(xié)助下,完成了這篇文章。</p><p> 參考文獻[1] P. Montmitonnet, E. Massoni, M. Vacanc
21、e, G. Sola, P. Gratacos, Modelling for geometrical control in cold and hot rolling, Ironmaking Steelmaking 20 (1993) 254–260. </p><p> [2] J. Shi, D.L.S. McElwainand, T.A.M. Langlands, A comparison of metho
22、ds to estimate the roll torque in thin strip rolling, Int. J. Mech. Sci. 43 (2001) 611–630. </p><p> [3] E.N. Dvorkin, M.A. Cavaliere, M.B. Goldschmit, Finite element models in the steel industry. Part I: S
23、imulation of flat product manufacturing processes, Comput. Struct. 81 (2003) 559–573. </p><p> [4] Z.Y. Jiang, A.K. Tieu, X.M. Zhang, C. Lu, W.H. Sun, Finite element simulation of cold rolling of thin strip
24、, J. Mater. Proc. Technol. 140 (2003) 542–547. </p><p> [5] R. Col′.rez, I. Sandoval, J.C. Morales, L.A. Leduc, Damage in as, J. Ram′hot rolling work rolls, Wear 230 (1999) 56–60. </p><p> [6]
25、 S. Iwadoh, H. Kuwamoto, S. Sonoda, Investigation about the mechanism of work roll wear at the cold rolling, J. Iron Steel Inst. Jpn. 75 (11) (1989) 2059–2066 (in Japanese). </p><p> [7] N. Koshizuka, T. Ki
26、mura, M. Ohori, S. Ueda, H. Wanaka, Influences of microstructure on the wear resistance of high C-5Cr-V steels for work rolls in cold rolling mills, J. Iron Steel Inst. Jpn. 75 (3) (1989) 509–516 (in Japanese). </p>
27、;<p> [8] J.J. Robinson, G. van Steden, F. ter Lingen, Effect of back-up roll wear on operation and strip shape of a CVC cold mill, Iron Steel Eng. 73 (6) (1996) 15–19. </p><p> [9] X.M. Zhang, Z.Y.
28、 Jiang, A.K. Tieu, X.H. Liu, G.D. Wang, Numerical modelling of the thermal deformation of CVC roll in hot strip rolling, J. Mater. Process. Technol. 130–131 (2002) 219–223. </p><p> [10] D.-F. Chang, Therma
29、l stresses in work rolls during the rolling of metal strip, J. Mater. Process. Technol. 94 (1) (1999) 45–51. </p><p> [11] S.-E. Lundberg, Evaluation of deterioration mechanisms and roll life of different r
30、oll materials, Steel Res. 64 (12) (1993) 597–603. </p><p> [12] C.R.F. Azevedo, J. Belotti Neto, Failure analysis of forged and induction hardened steel cold work rolls, Eng. Fail. Anal. 11 (6) (2004) 951–
31、966. </p><p> [13] G. Zhang, H. Xiso, C. Wang, Three-dimensional model for strip hot rolling, J. Iron Steel Res. Int. 13 (1) (2006) 23–26. </p><p> [14] C. Vergne, C. Boher, R. Gras, C. Levail
32、lant, Influence of oxides on friction in hot rolling: experimental investigations and tribological modeling, Wear 260 (9-10) (2006) 957–975. </p><p> [15] H.R. Le, M.P.F. Sutcliffe, Rolling of thin strip an
33、d foil: application of a tribological model for “mixed” lubrication, ASME Tribol. Div. Trib. 43 (2001) 1–8. </p><p> [16] A.K. Ray, K.K. Mishra, G. Das, P.N. Chaudhary, Life of rolls in a cold rolling mill
34、in a steel plant—operation versus manufacture, Eng. Fail. Anal. 7 (2000) 55–67. </p><p> [17] A. Boresi, O.M. Sidebottom, Advanced Mechanics of Materials, Wiley, 1985.</p><p> Analysis of prem
35、ature failure of work rolls in a cold strip plant</p><p> Hongchun Li, Zhengyi Jiang, Kiet , Tieu , Weihua Sun</p><p> School of Mechanical, Materials and Mechatronic Engineering, University o
36、f Wollongong, Wollongong, NSW 2522, Australia </p><p> Technology Centre, Jinan Iron and Steel Ltd., Jinan 250101, PR China </p><p> Received 12 September 2006; received in revised form 15 Jan
37、uary 2007; accepted 18 January 2007 </p><p> Available online 23 May 2007 </p><p><b> Abstract </b></p><p> In this paper, premature failures of several work rolls on
38、 a cold strip mill were investigated. In order to study the work roll surface feature and failure mechanism, the chemical compositions, microstructures and the hardness of roll materials were examined. The stresses in th
39、e spalled area of the work roll have been calculated, and the stress states identified. The causes for the roll wear and damage have been identified in the study. The surface images of the work rolls have been studied, a
40、nd</p><p> 2007 Elsevier B.V. All rights reserved. </p><p> Keywords: </p><p> Wear; Work roll; Cold rolling; Stress distribution </p><p> 1. Introduction </p>
41、;<p> At present, the cold rolled strip is produced on a tandem cold strip mill or a reversing cold strip mill where the work rolls are flattened [1] to a non-circular deformed shape [2]. Based on the control mod
42、els applied to the cold strip rolling, a good strip shape, profile and flatness [3,4] was obtained. In a cold rolling mill, the work rolls play the dominant role, making the strip deformation to achieve the desired shape
43、, profile and dimensions. However, the work rolls operate under extremely </p><p> process, work rolls are subject to high cyclic loading and high levels of abrasion. The deformation resistance of rolled ma
44、terials is extremely high in cold steel rolling compared with that of hot rolling. The roll surface in the roll bite is subjected to high pressure that is greater than 10,000 MPa and further shear stress generated by fri
45、ction [16] at the roll/strip interface. </p><p> The premature failure of a work roll increases not only the cost of the rolling but also the down time of the mill, affecting the productivity significantly
46、. The causes for premature failure of the forged alloy steel work rolls can be the combined effects of operating techniques and the roll metallurgical factors. Operating factors include the choice of rolling parameters s
47、uch as the rolling load, lubrication, rolling speed, and the experience of operators. Work roll quality includes the presenc</p><p> In this paper, the authors investigated the premature failures of work ro
48、lls on a cold strip mill. The chemical compositions, microstructures and the hardness of roll materials were examined using the collected spalled samples, and tensile tests were conducted. The stress states in the spalle
49、d area have also been determined to find the causes of the roll wear and spall damage. The surface images of the work rolls have been studied, and the characteristics of wear have been identified for the dam</p>&
50、lt;p> 2. Rolling process and parameters </p><p> Fig. 1. A 2-stand tandem cold strip mill. (1) Coiling #2, (2) tension meter, (3) laser velometer, (4) thickness gauge, (5) stand #2, (6) stand #1, (7) co
51、iling machine #1 and (8) uncoiling machine. </p><p> Fig. 1 schematically outlines the 2-stand compact cold strip rolling mills. Hot rolled strip was the initial feedstock for this 4-high cold mill. The hot
52、 rolled coil is about 1.5–5.0 mm in thickness, 900–1680 mm in width and 35 tonnes in weight. The oxide scale on the hot strip was removed by pickling before rolling. The maximum pickling speed is 60 m/min and the tempera
53、ture of acid bath is about 70–85 .C. The pickling process does not affect the subsequent results. The AGC hydraulic control, th</p><p> Work rolls were made of forged alloy steel containing approximately 4%
54、 Cr with hardness from HSC 83 to 85. CVC profile was employed in the work rolls. Tables 1 and 2 show the parameters of the rolling and the work rolls. </p><p> 3. Results and discussion </p><p>
55、; 3.1. Work roll sampling </p><p> The samples from a spalled work roll during its campaign were obtained, and they were cut and prepared for observation using the scanning electron microscope and optical
56、microscope. Surface images of the defects were taken from the four different used rolls, which were marked by metal welding, banding and spalling during their campaign. All of the work rolls were used in different stands
57、. Roll surface roughness, Ra, was measured from the work roll before and after being installed into the rollin</p><p> 3.2. Spall </p><p> Fig. 2 (a and b) shows the defective portion of work
58、rolls that were spalled on work rolls A and D. In the case of roll D, the spall seems to be a curve which is about 18 mm in length on the roll surface. However, the crack has no depth according to ultrasonic test. Nevert
59、heless, the damage on roll D is possibly at the first stage of roll A.</p><p><b> Table 1 </b></p><p> Rolling parameters </p><p><b> Table 2 </b></p&g
60、t;<p> Work roll parameters </p><p> Fig. 2. Spalling of work rolls. (a) Spalled roll A and (b) spalled roll D. </p><p> Typical size of the spalled area has been measured in the case
61、of roll A. The spalled area is the maximum of 1430 mm in length, 353 mm in circumference and 85 mm in depth. The roll prematurely failed after 4.515 km strip rolling service that is less than the rolling service length o
62、f roll D. Microstructure of the roll material was examined by an optical microscope, as shown in Fig. 3. It can be seen that there is a 75 mm of depth of hardening zone in the work roll, so the area of the microstruct<
63、;/p><p> Fig. 3. Microstructure of the material of work roll. </p><p> (a) A region close to the surface, (b) approximately 75 mm in depth from the surface and (c) about 85 mm in depth from the s
64、urface. </p><p> Fig. 4. Crack on the roll A.</p><p> Tensile tests were carried out on an Instron testing machine with flat specimens. The samples were cut from the large spalled pieces of th
65、e roll A. Results obtained from the Instron testing machine indicate that the tensile and yield strengths are below the manufacturer’s requirements. Fig. 4 shows the crack on the work roll A. The normal stress and shear
66、stress of work roll A were calculated by Hertzian analysis. The calculated normal stress and shear stress [17] developed as a result of contac</p><p> Both rolls A and D are new rolls. Worn profile of eithe
67、r the work roll or the back up roll may not be the actual factor contributing to the roll damage. However, high local loads at leading edges or doubling of the rolled thickness due to folding strip may exceed the roll su
68、rface shear strength. It is likely that one or more pressure cracks is formed in an area of local overload near the surface. The cracks are oriented parallel to the roll axis but propagate in a non-radial direction (Fig.
69、 2(b)</p><p> Fig. 5. Normal stresses developed as result of contact with the rolled strip.</p><p> Fig. 6. Shear stresses developed as result of contact with the rolled strip.</p><
70、;p> Fig. 7. Relationship between the length of rolled strip before roll failure and</p><p> surface roughness.</p><p> 3.3. Strip welding </p><p> Fig. 8 shows the metal weld
71、ing on the roll surface of the work roll B after the third pass of rolling, serving on the second stand of the mill. The damage was located at the edge of the rolled strip, and its area is about 650 mm in width and 707 m
72、m in circumference. Incorrect roll profile or poor strip shape can result in high specific rolling pressure which in turn leads to a high roll surface temperature at the local area. Consequently increasing the plastic de
73、formation of the roll surface in </p><p> After removing the banding part due to strip welding on the roll surface, the work roll can be used continuously. However, the wear of the work roll is significant
74、for this case, as shown in Fig. 7 the roll surface roughness reduces dramatically (see roll B) compared to other cases. The service life of the roll B was not obviously affected due to its continuous usage. </p>&
75、lt;p> 3.4. Banding </p><p> Heavily peeled bright areas appear on the work roll C oriented in the circumferential direction in the form of bands with a very rough surface, as shown in Fig. 9. The remove
76、d layer has a thickness of between about 0.1 and 0.9 mm. It is well accepted that the banding is typical surface damage to high chrome work rolls when they are used after a longer run time in the same critical stands and
77、 positions. However, the case of roll C happened at the first pass of rolling after short campaign times. </p><p> The origin of banding occurs when alternating friction forces in combination with alternati
78、ng thermal loads exceed the fatigue shear strength of the surface material. It is assumed that the surface cracks within the depth of primary fire cracks develop and propagate until the fire cracked areas are sheared awa
79、y from the roll. When the roll surface is locally deteriorated, the peak shearing forces are induced and lead to a very fast development of peeled bands around the roll barrel, and cause th</p><p> Fig. 8.
80、Strip welding on work roll.</p><p> Fig. 9 Band of work roll.</p><p> The case exhibited in Fig. 9 has a significant influence on the roll service life and the wear of the roll, which demonstr
81、ated that the roll surface roughness reduced dramatically in a short kilometer rolled strip length (see Fig. 7, roll C). Therefore, this defect increases the roll wear significantly. </p><p> 4. Conclusion
82、s </p><p> Three kinds of surface defects of the work rolls in a cold strip plant were investigated in this paper. It is concluded that some components of stresses reach a large value at the surface, which
83、can cause the cracks of the work roll, and result in a reduced service life. In the meantime, metallurgical defects, such as the improperly prepared microstructure, increase the risk of roll surface material spalling. St
84、rip welding is caused by incorrect mill operation. Such incidents may be avoided by i</p><p> Acknowledgements </p><p> The first author would like to thank University of Wollongong for Univer
85、sity Postgraduate Award (UPA) support for the current work. The authors also would like to thank Dr. T. Silver’s assistance in proof reading of the paper. </p><p> References </p><p> [1] P. M
86、ontmitonnet, E. Massoni, M. Vacance, G. Sola, P. Gratacos, Modelling for geometrical control in cold and hot rolling, Ironmaking Steelmaking 20 (1993) 254–260. </p><p> [2] J. Shi, D.L.S. McElwainand, T.A.M
87、. Langlands, A comparison of methods to estimate the roll torque in thin strip rolling, Int. J. Mech. Sci. 43 (2001) 611–630. </p><p> [3] E.N. Dvorkin, M.A. Cavaliere, M.B. Goldschmit, Finite element model
88、s in the steel industry. Part I: Simulation of flat product manufacturing processes, Comput. Struct. 81 (2003) 559–573. </p><p> [4] Z.Y. Jiang, A.K. Tieu, X.M. Zhang, C. Lu, W.H. Sun, Finite element simula
89、tion of cold rolling of thin strip, J. Mater. Proc. Technol. 140 (2003) 542–547. </p><p> [5] R. Col′.rez, I. Sandoval, J.C. Morales, L.A. Leduc, Damage in as, J. Ram′hot rolling work rolls, Wear 230 (1999)
90、 56–60. </p><p> [6] S. Iwadoh, H. Kuwamoto, S. Sonoda, Investigation about the mechanism of work roll wear at the cold rolling, J. Iron Steel Inst. Jpn. 75 (11) (1989) 2059–2066 (in Japanese). </p>
91、<p> [7] N. Koshizuka, T. Kimura, M. Ohori, S. Ueda, H. Wanaka, Influences of microstructure on the wear resistance of high C-5Cr-V steels for work rolls in cold rolling mills, J. Iron Steel Inst. Jpn. 75 (3) (1989
92、) 509–516 (in Japanese). </p><p> [8] J.J. Robinson, G. van Steden, F. ter Lingen, Effect of back-up roll wear on operation and strip shape of a CVC cold mill, Iron Steel Eng. 73 (6) (1996) 15–19. </p>
93、;<p> [9] X.M. Zhang, Z.Y. Jiang, A.K. Tieu, X.H. Liu, G.D. Wang, Numerical modelling of the thermal deformation of CVC roll in hot strip rolling, J. Mater. Process. Technol. 130–131 (2002) 219–223. </p>&
94、lt;p> [10] D.-F. Chang, Thermal stresses in work rolls during the rolling of metal strip, J. Mater. Process. Technol. 94 (1) (1999) 45–51. </p><p> [11] S.-E. Lundberg, Evaluation of deterioration mecha
95、nisms and roll life of different roll materials, Steel Res. 64 (12) (1993) 597–603. </p><p> [12] C.R.F. Azevedo, J. Belotti Neto, Failure analysis of forged and induction hardened steel cold work rolls, En
96、g. Fail. Anal. 11 (6) (2004) 951– 966. </p><p> [13] G. Zhang, H. Xiso, C. Wang, Three-dimensional model for strip hot rolling, J. Iron Steel Res. Int. 13 (1) (2006) 23–26. </p><p> [14] C. Ve
97、rgne, C. Boher, R. Gras, C. Levaillant, Influence of oxides on friction in hot rolling: experimental investigations and tribological modelling, Wear 260 (9-10) (2006) 957–975. </p><p> [15] H.R. Le, M.P.F.
98、Sutcliffe, Rolling of thin strip and foil: application of a tribological model for “mixed” lubrication, ASME Tribol. Div. Trib. 43 (2001) 1–8. </p><p> [16] A.K. Ray, K.K. Mishra, G. Das, P.N. Chaudhary, Li
99、fe of rolls in a cold rolling mill in a steel plant—operation versus manufacture, Eng. Fail. Anal. 7 (2000) 55–67. </p><p> [17] A. Boresi, O.M. Sidebottom, Advanced Mechanics of Materials, Wiley, 1985. <
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業(yè)設(shè)計外文翻譯---齒輪和軸的介紹
- 齒輪和軸的介紹畢業(yè)設(shè)計外文翻譯
- 畢業(yè)設(shè)計外文翻譯----結(jié)構(gòu)分析
- 故障的分析、尺寸的決定以及凸輪的分析和應(yīng)用-畢業(yè)設(shè)計外文翻譯
- 振動信號分析在冷軋廠常見設(shè)備故障診斷中的應(yīng)用.pdf
- 音頻信號發(fā)生器畢業(yè)設(shè)計外文翻譯
- 水泥廠窯尾工藝設(shè)計畢業(yè)設(shè)計(含外文翻譯)
- 機械畢業(yè)設(shè)計外文翻譯--故障的分析、尺寸的決定以及凸輪的分析和應(yīng)用
- 信號發(fā)生器電路設(shè)計畢業(yè)設(shè)計(含外文翻譯)
- 信號發(fā)生器電路設(shè)計畢業(yè)設(shè)計(含外文翻譯)
- 冷軋窄帶畢業(yè)設(shè)計
- 冷軋車間設(shè)計畢業(yè)設(shè)計
- 機械專業(yè)畢業(yè)設(shè)計-外文翻譯--故障的分析、尺寸的決定以及凸輪的分析和應(yīng)用
- 畢業(yè)設(shè)計外文翻譯
- 玻璃廠畢業(yè)設(shè)計外文翻譯----玻璃熔窯的最優(yōu)設(shè)計
- 機械畢業(yè)設(shè)計英文外文翻譯79齒輪和軸的介紹
- 網(wǎng)站畢業(yè)設(shè)計外文翻譯
- 電氣畢業(yè)設(shè)計外文翻譯
- 混凝土畢業(yè)設(shè)計外文翻譯
- lyx畢業(yè)設(shè)計外文翻譯
評論
0/150
提交評論